BANOVA: Bayesian Analysis of Experiments in Consumer Psychology

60 Pages Posted: 4 Jun 2019

See all articles by Michel Wedel

Michel Wedel

University of Maryland - Robert H. Smith School of Business

Chen Dong

University of Maryland - College of Computer, Mathematical and Natural Sciences

Date Written: May 14, 2019

Abstract

This article introduces Bayesian extension of ANOVA for the analysis of experimental data in consumer psychology. The approach, called BANOVA, addresses some common challenges that consumer psychologists encounter in their experimental work, and is specifically suited for the analysis of repeated measures designs. There appears to be a recent surge in interest in those designs based on the recognition that they are sensitive to individual differences in the response to experimental treatments and that they offer advantages for assessing causal mediating mechanisms, even at the individual level. BANOVA enables the analysis of repeated measures data derived from mixed within-between-subjects experiments with Normal and non-Normal dependent variables and accommodates unobserved individual differences. It allows for the calculation of effect sizes, planned comparisons, simple effects, spotlight and floodlight analyses, and includes a wide range of mediation, moderation, and moderated mediation analyses. An R software package implements these analyses, and aims to provide a one-stop-shop for the analysis of experiments in consumer psychology. The package is illustrated through applications to a number of data sets from previously published studies.

Keywords: Repeated measures design, Hierarchical Generalized Linear Model, MCMC, mediation, moderation, effect size, floodlight analysis, simple effects, R package

Suggested Citation

Wedel, Michel and Dong, Chen, BANOVA: Bayesian Analysis of Experiments in Consumer Psychology (May 14, 2019). Available at SSRN: https://ssrn.com/abstract=3388203 or http://dx.doi.org/10.2139/ssrn.3388203

Michel Wedel (Contact Author)

University of Maryland - Robert H. Smith School of Business ( email )

College Park, MD 20742-1815
United States

HOME PAGE: http://www.rhsmith.umd.edu/directory/michel-wedel

Chen Dong

University of Maryland - College of Computer, Mathematical and Natural Sciences ( email )

2300 Symons Hall,
University of Maryland
College Park, MD 20742-3255
United States

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Downloads
50
Abstract Views
320
PlumX Metrics