Testing Sharpe Ratio: Luck or Skill?

56 Pages Posted: 7 Jun 2019

See all articles by Eric Benhamou

Eric Benhamou

Université Paris Dauphine; AI For Alpha; EB AI Advisory; Université Paris-Dauphine, PSL Research University

David Saltiel

Université Paris Dauphine; A.I. Square Connect; AI For Alpha

Beatrice Guez

AI For Alpha

Nicolas Paris

A.I. Square Connect

Date Written: May 20, 2019

Abstract

Sharpe ratio (sometimes also referred to as information ratio) is widely used in asset management to compare and benchmark funds and asset managers. It computes the ratio of the (excess) net return over the strategy standard deviation. However, the elements to compute the Sharpe ratio, namely, the expected returns and the volatilities are unknown numbers and need to be estimated statistically. This means that the Sharpe ratio used by funds is likely to be error prone because of statistical estimation errors. In this paper, we provide various tests to measure the quality of the Sharpe ratios. By quality, we are aiming at measuring whether a manager was indeed lucky of skillful. The test assesses this through the statistical significance of the Sharpe ratio. We not only look at the traditional Sharpe ratio but also compute a modified Sharpe insensitive to used Capital. We provide various statistical tests that can be used to precisely quantify the fact that the Sharpe is statistically significant. We illustrate in particular the number of trades for a given Sharpe level that provides statistical significance as well as the impact of auto-correlation by providing reference tables that provides the minimum required Sharpe ratio for a given time period and correlation. We also provide for a Sharpe ratio of 0.5, 1.0, 1.5 and 2.0 the skill percentage given the auto-correlation level.

Suggested Citation

Benhamou, Eric and Saltiel, David and Guez, Beatrice and Paris, Nicolas, Testing Sharpe Ratio: Luck or Skill? (May 20, 2019). Available at SSRN: https://ssrn.com/abstract=3391214 or http://dx.doi.org/10.2139/ssrn.3391214

Eric Benhamou (Contact Author)

Université Paris Dauphine ( email )

Place du Maréchal de Tassigny
Paris, Cedex 16 75775
France

AI For Alpha ( email )

35 boulevard d'Inkermann
Neuilly sur Seine, 92200
France

EB AI Advisory ( email )

35 Boulevard d'Inkermann
Neuilly sur Seine, 92200
France

Université Paris-Dauphine, PSL Research University ( email )

Place du Maréchal de Lattre de Tassigny
Paris, 75016
France

David Saltiel

Université Paris Dauphine ( email )

Place du Maréchal de Tassigny
Paris, Cedex 16 75775
France

A.I. Square Connect ( email )

35 Boulevard d'Inkermann
Neuilly sur Seine, 92200
France

AI For Alpha ( email )

35 boulevard d'Inkermann
Neuilly sur Seine, 92200
France

Beatrice Guez

AI For Alpha ( email )

35 boulevard d'Inkermann
Neuilly sur Seine, 92200
France

Nicolas Paris

A.I. Square Connect ( email )

35 Boulevard d'Inkermann
Neuilly sur Seine, 92200
France

Do you have negative results from your research you’d like to share?

Paper statistics

Downloads
4,491
Abstract Views
26,497
Rank
3,798
PlumX Metrics