Estimating Large-Scale Tree Logit Models
87 Pages Posted: 10 Jul 2019 Last revised: 16 Dec 2022
Date Written: November 20, 2022
Abstract
We describe an efficient estimation method for large-scale tree logit models, using a novel change-of-variables transformation that allows us to express the negative log-likelihood as a strictly convex function in the leaf node parameters and a difference of strictly convex functions in the non-leaf node parameters. Exploiting this representation, we design a fast iterative method that computes a sequence of parameter estimates using simple closed-form updates. Our algorithm relies only on first-order information (function and gradients values), but unlike other first-order methods, it does not require any step size tuning or costly projection steps. The sequence of parameter estimates yields increasing likelihood values, and we establish sublinear convergence to a stationary point of the maximum likelihood problem. Numerical results on both synthetic and real data show that our algorithm outperforms state-of-the-art optimization methods, especially for large-scale tree logit models with thousands of nodes.
Keywords: tree logit, choice modeling, parameter estimation
Suggested Citation: Suggested Citation