Predicting Global Restaurant Facility Closures

57 Pages Posted: 18 Jul 2019 Last revised: 26 Mar 2020

See all articles by Derek Snow

Derek Snow

The Alan Turing Institute; New York University (NYU) - Finance and Risk Engineering Department; University of Auckland

Date Written: January 23, 2018

Abstract

This paper predicts the likelihood that a restaurant will close within the next one to two years using a Yelp restaurant dataset and a high dimensional gradient boosting machine called LightGBM (hereafter GBM). This model, trained on more than 20,000 individual restaurants, has an accuracy just above 96% and an ROC (AUC) score of 75%. An ROC (AUC) score above 70% is ordinarily classified as a “fair model” in terms of performance. Using the prediction model, I also quantify the most predictive variables and higher-order variable interactions, both of which produce compelling insights into several non-linear relationships. A model that predicts facility closures has implications for both equity and debt providers. In this chapter, I argue that capital providers should make use of publicly available datasets to aid their capital allocation decision-making process.

Keywords: Machine Learning, Applied, FirmAI, Restaurant, Bankruptcy, Failure, Closures

JEL Classification: C38, C45, C52, C53, C54

Suggested Citation

Snow, Derek, Predicting Global Restaurant Facility Closures (January 23, 2018). Available at SSRN: https://ssrn.com/abstract=3420490 or http://dx.doi.org/10.2139/ssrn.3420490

Derek Snow (Contact Author)

The Alan Turing Institute ( email )

British Library, 96 Euston Rd
London, NW1 2DB
United Kingdom

HOME PAGE: http://https://www.turing.ac.uk/

New York University (NYU) - Finance and Risk Engineering Department ( email )

6 Metrotech Center
New York, NY 11201
United States

University of Auckland ( email )

Private Bag 92019
Auckland Mail Centre
Auckland, 1142
New Zealand

Here is the Coronavirus
related research on SSRN

Paper statistics

Downloads
259
Abstract Views
1,642
rank
128,405
PlumX Metrics