Generalized Euler Equation Errors for Discrete Time Dynamic Portfolio Choice Models
25 Pages Posted: 20 Sep 2019 Last revised: 12 Feb 2020
Date Written: February 12, 2020
Abstract
The solution to dynamic portfolio choice models can be formulated in terms of a value function by the Bellman principle of optimality, which reduces the multi-period optimal policy choice problem to a sequence of one-period maximization problems. For two adjacent periods, economists compute the error of numerically obtained policies by measuring how much these policies violate the intertemporal first order conditions for the optimal policy choice problem---so-called Euler equation errors. In this paper, we derive generalized Euler equation errors for the solution to a broad class of discrete time dynamic portfolio choice models where the policies are continuous choice variables. Our key precondition is that the gradient of the value function with respect to the state variables can be approximated. This is, for example, the case when a global polynomial basis or B-spline basis functions are used for the approximation of the value function within the discrete time dynamic programming approach. We apply our theoretical results to exemplary, representative dynamic portfolio choice models.
Keywords: Dynamic portfolio choice, discrete time dynamic programming, Euler equation errors, gradient-based optimization
JEL Classification: C61, D52, D53, G11, G12
Suggested Citation: Suggested Citation