Detection of Spambot using Random Forest Algorithm

8 Pages Posted: 7 Oct 2019

See all articles by J.I Sheeba

J.I Sheeba

Pondicherry Engineering College

S Pradeep Devaneyan

Christ College of Engineering and Technology

Velvizhi G

Pondicherry Engineering College, Students

Date Written: October 2, 2019

Abstract

Spam bot detection is an automated computer program has beendesigned to mini human behaviors in the sending and spreading of spam. Spambot usually create a fraud account that can be used to send spam. In the existing work, the spambot is identified by using a social fingerprinting technique and also the Spambot account is detected by the Longest Common Subsequences (LCS) algorithm. The similarities between both genuine account and Spambot account groups of users are characterized by the digital DNA. In the LCS algorithm, the spambot detection is not verified in the efficient manner. To overcome this problem in the proposed work is going to identify the Spambot detection using Random forest classifier technique instead of LCS method from the twitter account. In addition, it will also enhance the accuracy of the classification by using Latent Semantic Analysis(LSA) and also it will detect and blocks the spambot accounts.

Keywords: Spambot detection, Longest Common Subsequences, Random forest classifier, Latent Semantic Analysis, Twitter

Suggested Citation

Sheeba, J.I and Pradeep Devaneyan, S and G, Velvizhi, Detection of Spambot using Random Forest Algorithm (October 2, 2019). Proceedings of International Conference on Advancements in Computing & Management (ICACM) 2019, Available at SSRN: https://ssrn.com/abstract=3462968 or http://dx.doi.org/10.2139/ssrn.3462968

J.I Sheeba

Pondicherry Engineering College ( email )

Pondicherry
India

S Pradeep Devaneyan

Christ College of Engineering and Technology ( email )

Pitchaveeranpet
Moolakulam
Puducherry, 605 010
India

Velvizhi G (Contact Author)

Pondicherry Engineering College, Students ( email )

India

Here is the Coronavirus
related research on SSRN

Paper statistics

Downloads
19
Abstract Views
146
PlumX Metrics