A Multi-Label Machine Learning Approach to Support Pathologist's Histological Analysis
2019 ENTRENOVA Conference Proceedings
12 Pages Posted: 11 Dec 2019
Date Written: September 12, 2019
Abstract
This paper proposes a new tool in the field of telemedicine, defined as a specific branch where IT supports medicine, in case distance impairs the proper care to be delivered to a patient. All the information contained into medical texts, if properly extracted, may be suitable for searching, classification, or statistical analysis. For this reason, in order to reduce errors and improve quality control, a proper information extraction tool may be useful. In this direction, this work presents a Machine Learning Multi-Label approach for the classification of the information extracted from the pathology reports into relevant categories. The aim is to integrate automatic classifiers to improve the current workflow of medical experts, by defining a Multi-Label approach, able to consider all the features of a model, together with their relationships.
Keywords: machine learning, health problems, knowledge extraction, data mining, classification
JEL Classification: I10, I12
Suggested Citation: Suggested Citation