Privacy and Legal Automation: The DMCA as a Case Study

75 Pages Posted: 7 Jan 2020 Last revised: 31 Jan 2022

See all articles by Jon Penney

Jon Penney

Osgoode Hall Law School; Harvard University - Berkman Klein Center for Internet & Society; Citizen Lab, University of Toronto

Date Written: September 1, 2019


Advances in artificial intelligence, machine learning, computing capacity, and big data analytics are creating exciting new possibilities for legal automation. At the same time, these changes pose serious risks for civil liberties and other societal interests. Yet, existing scholarship is narrow, leaving uncertainty on a range of issues, including a glaring lack of systematic empirical work as to how legal automation may impact people’s privacy and freedom. This article addresses this gap with an original empirical analysis of the Digital Millennium Copyright Act (DMCA), which today sits at the forefront of algorithmic law due to its automated enforcement of copyright through DMCA notices at mass scale. With literally millions of such notices sent daily, this automation has been criticized for causing large scale chilling effects online, yet few empirical studies have examined this issue in depth. This article does so with a mixed-method empirical legal study synthesizing findings from a survey--with over 1000 participants in a nationally representative sample--with findings from a content analysis of 500 Google Blogs and 500 Twitter accounts targeted by DMCA notices. The study offers a number of new insights, including (1) the DMCA notice and takedown system is likely working for rights-holders with major platforms like Google and Twitter effectively processing the vast majority of DMCA notices they are receiving; (2) DMCA notices may be having broader chilling effects on internet users across a range of activities, with women and the economically disadvantaged likely disproportionately impacted; (3) how the provision of legal information as to internet users' rights can mitigate these chilling effects; and (4) the effectiveness of automated DMCA notices as compared to non-automated ones. The article explores the implications of these findings, including for copyright, algorithmic law, and lays the foundations a privacy theory of automated law and its governance.

Keywords: privacy, automation, legal automation, chilling effects, human rights, DMCA, copyright, digital copyright, Digital Millennium Copyright Act, social media, google, twitter, social network, blogger, artificial intelligence, machine learning, micro-directive, personalization, empirical legal studies

JEL Classification: K42, K10, K11, K19

Suggested Citation

Penney, Jonathon, Privacy and Legal Automation: The DMCA as a Case Study (September 1, 2019). Stanford Technology Law Review, Vol. 22, No. 1, 412, Available at SSRN:

Jonathon Penney (Contact Author)

Osgoode Hall Law School ( email )

4700 Keele Street
Toronto, Ontario M3J 1P3

Harvard University - Berkman Klein Center for Internet & Society ( email )

Harvard Law School
23 Everett, 2nd Floor
Cambridge, MA 02138
United States

Citizen Lab, University of Toronto ( email )

Munk School of Global Affairs
University of Toronto
Toronto, Ontario M5S 3K7

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Abstract Views
PlumX Metrics