Optimal Location for Competing Retail Service Facilities

39 Pages Posted: 1 May 2020 Last revised: 4 May 2020

See all articles by Kalyan Talluri

Kalyan Talluri

Imperial College Business School

Muge Tekin

Imperial College Business School

Date Written: April 22, 2020


We consider the location problem for retail service facilities, consumer-facing storefronts that provide a service and compete with other retailers to some degree or the other. Location is one of the most important strategic decisions for a retail firm. It is a risky and often an irrevocable decision, in the sense that it involves a large investment, is very difficult to rectify, and affects profits and operations for many years in the future. This problem is especially challenging for the following reasons:

(i) Location models require estimates of how demand will expand and shift when we locate a new facility, but the firm, since it has not yet started operations, has no historical demand data to calibrate the models;

(ii) Future entry as well as exits of competitors affect the firm’s revenues and profitability, but predicting such future strategic developments is rather complicated.

In this paper, we consider forward-looking competitive entry and exit decisions using a simple equilibrium framework, solvable by integer programming and estimable from public data. To capture the taste of local demographics, we build a model based on online reviews of the incumbent establishments where facilities have latent characteristics and customers have preference for these latent characteristics. This serves as an input to predict customer demand which drives our optimal location solution and gives firms an easy and tractable toolkit for their decision-making. We apply the model to a service industry, specifically the restaurant industry, to illustrate how it can be made operational. Our estimation results show that customers differ significantly in their willingness to travel and rating sensitivities across restaurant types. Apart from a tractable toolkit to help their decision process, we show, via counterfactuals, that optimized location decision-making can increase chances of survival by up to 37.5%. Managerial insight into the nature of competitive location dispersion is also provided.

Keywords: Competitive Facility-Location, Retail, Equilibrium, Analytics, Online Reviews

Suggested Citation

Talluri, Kalyan and Tekin, Muge, Optimal Location for Competing Retail Service Facilities (April 22, 2020). Available at SSRN: https://ssrn.com/abstract=3583413 or http://dx.doi.org/10.2139/ssrn.3583413

Kalyan Talluri

Imperial College Business School ( email )

387A Business School
South Kensington Campus
London, London SW7 2AZ
United Kingdom
+44 (0)20 7594 1233 (Phone)

HOME PAGE: http://https://www.imperial.ac.uk/people/kalyan.talluri

Muge Tekin (Contact Author)

Imperial College Business School ( email )

South Kensington Campus
Exhibition Road
London, Greater London SW7 2AZ
United Kingdom

Here is the Coronavirus
related research on SSRN

Paper statistics

Abstract Views
PlumX Metrics