
Preprints with The Lancet is a collaboration between The Lancet Group of journals and SSRN to facilitate the open sharing of preprints for early engagement, community comment, and collaboration. Preprints available here are not Lancet publications or necessarily under review with a Lancet journal. These preprints are early-stage research papers that have not been peer-reviewed. The usual SSRN checks and a Lancet-specific check for appropriateness and transparency have been applied. The findings should not be used for clinical or public health decision-making or presented without highlighting these facts. For more information, please see the FAQs.
Risk Prediction for Poor Outcome and Death in Hospital In-Patients with COVID-19: Derivation in Wuhan, China and External Validation in London, UK
27 Pages Posted: 4 Jun 2020
More...Abstract
Background: Accurate risk prediction of clinical outcome would usefully inform clinical decisions and intervention targeting in COVID-19. The aim of this study was to derive and validate risk prediction models for poor outcome and death in adult inpatients with COVID-19.
Methods: Model derivation using data from Wuhan, China used logistic regression with death and poor outcome (death or severe disease) as outcomes. Predictors were demographic, comorbidity, symptom and laboratory test variables. The best performing models were externally validated in data from London, UK.
Findings: 4.3% of the derivation cohort (n=775) died and 9.7% had a poor outcome, compared to 34.1% and 42.9% of the validation cohort (n=226). In derivation, prediction models based on age, sex, neutrophil count, lymphocyte count, platelet count, C-reactive protein and creatinine had excellent discrimination (death c-index=0.91, poor outcome c-index=0.88), with good-to-excellent calibration. Using two cut-offs to define low, high and very-high risk groups, derivation patients were stratified in groups with observed death rates of 0.34%, 15.0% and 28.3% and poor outcome rates 0.63%, 8.9% and 58.5%. External validation discrimination was good (c-index death=0.74, poor outcome=0.72) as was calibration. However, observed rates of death were 16.5%, 42.9% and 58.4% and poor outcome 26.3%, 28.4% and 64.8% in predicted low, high and very-high risk groups.
Interpretation: Our prediction model using demography and routinely-available laboratory tests performed very well in internal validation in the lower-risk derivation population, but less well in the much higher-risk external validation population. Further external validation is needed. Collaboration to create larger derivation datasets, and to rapidly externally validate all proposed prediction models in a range of populations is needed, before routine implementation of any risk prediction tool in clinical care.
Funding Statement: HW and HZ are supported by Medical Research Council and Health Data Research UK Grant (MR/S004149/1), Industrial Strategy Challenge Grant (MC_PC_18029) and Wellcome Institutional Translation Partnership Award (PIII054). RD is supported by the National Institute for Health Research (NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London. DMB is funded by a UKRI Innovation Fellowship as part of Health Data Research UK MR/S00310X/1 (https://www.hdruk.ac.uk). KD is supported by LifeArc STOPCOVID award. This work uses data provided by patients and collected by the NHS as part of their care and support. XW is supported by National Natural Science Foundation of China (grant number:81700006). QL is supported by National Key R&D Program (2018YFC1313700), National Natural Science Foundation of China (grant number: 81870064) and the “Gaoyuan” project of Pudong Health and Family Planning Commission (PWYgy2018-06).
Declaration of Interests: The authors declare no competing interests.
Ethics Approval Statement: The derivation study was approved by the Research Ethics Committee of Shanghai Dongfang Hospital and Taikang Tongji Hospital. The external validation study operated under London South East Research Ethics Committee (reference 18/LO/2048) approval granted to the King’s Electronic Records Research Interface (KERRI).
Keywords: COVID-19; SARS-CoV-2; prognosis; Risk Prediction Model; External Validation; China; United Kingdom
Suggested Citation: Suggested Citation