Predicting House Prices in Turkey by Using Machine Learning Algorithms

Journal of Statistical and Econometric Methods, Vol.9, No.4, 2020, pp.31-38.

8 Pages Posted: 18 Jul 2020

See all articles by Mehmet Erkek

Mehmet Erkek

affiliation not provided to SSRN

Kamil Çayırlı

affiliation not provided to SSRN

Ali Hepsen

Istanbul University - Faculty of Business Administration, Department of Finance

Date Written: June 26, 2020

Abstract

Housing prices are an important reflection of the economy, and housing price ranges are of great interest for both buyers and sellers. The goal of this paper is to empirically conduct the best machine learning regression model for Turkish Housing Market by comparing accuracy scores and absolute deviations of test results by using Python programming language and Keras library for the five-year period from January 2015 to December 2019. This study consists of 15 explanatory variables describing (almost) every aspect of houses in Istanbul, Izmir and Ankara. These fifteen explanatory building and dwelling variables are used for each prediction model. In this study, three different data models are created by using support vector machine, feed-forward neural networks and generalized regression neural networks algorithms. The experiments demonstrate that the Feed-forward Neural Network model, based on accuracy, consistently outperforms the other models in the performance of housing price prediction. According to another result of the study, the most important variables in the model are the location of the house and the size of the house, while the size of the terrace is determined as the least important variable.

Keywords: Housing Market, Zingat.com, Machine Learning, House Price Prediction, Python Programming Language, Keras Library

JEL Classification: R10, R15, R19

Suggested Citation

Erkek, Mehmet and Çayırlı, Kamil and Hepsen, Ali, Predicting House Prices in Turkey by Using Machine Learning Algorithms (June 26, 2020). Journal of Statistical and Econometric Methods, Vol.9, No.4, 2020, pp.31-38., Available at SSRN: https://ssrn.com/abstract=3635948

Mehmet Erkek

affiliation not provided to SSRN

Kamil Çayırlı

affiliation not provided to SSRN

Ali Hepsen (Contact Author)

Istanbul University - Faculty of Business Administration, Department of Finance ( email )

Istanbul
Turkey

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Downloads
246
Abstract Views
644
rank
176,857
PlumX Metrics