Nonparametric Density Estimation and Tests of Continuous Time Interest Rate Models
Finance and Economics Discussion Series 97-26
49 Pages Posted: 26 Nov 1997
Abstract
Nonparametric kernel density estimation has recently been used to estimate and test short-term interest rate models, but inference has been based on asymptotics. We derive finite sample properties of kernel density estimates of the ergodic distribution of the short-rate when it follows a continuous time AR(1) as in Vasicek. We find that the asymptotic distribution substantially understates finite sample bias, variance, and correlation. Also, estimator quality and bandwidth choice depend strongly on the persistence of the interest rate process and on the span of the data, but not on sampling frequency. We also examine the size and power of one of Ait-Sahalia's nonparametric tests of continuous time interest rate models. The test rejects too often. This is probably because the quality of the nonparametric density estimate depends on persistence, but the asymptotic distribution of the test does not. After critical values are adjusted for size, the test has low power in distinguishing between the Vasicek and Cox-Ingersoll-Ross models relative to a conditional moment-based specification test.
JEL Classification: C12, C14, G12
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Nonparametric Pricing of Interest Rate Derivative Securities
-
Back to the Future: Generating Moment Implications for Continuous-Time Markov Processes
-
Maximum-Likelihood Estimation of Discretely Sampled Diffusions: A Closed-Form Approach
-
Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed-Form Approach
-
Is the Short Rate Drift Actually Nonlinear?
By David A. Chapman and Neil D. Pearson
-
Maximum Likelihood Estimation of Generalized Ito Processes with Discretely Sampled Data
By Andrew W. Lo
-
Maximum Likelihood Estimation of Generalized Ito Processes with Discretely Sampled Data
By Andrew W. Lo
-
Closed-Form Likelihood Expansions for Multivariate Diffusions
-
Transformation of Heath-Jarrow-Morton Models to Markovian Systems
By Ramaprasad Bhar and Carl Chiarella