Enhanced Fracture Toughness in Ceramic Superlattice Thin Films: On the Role of Coherency Stresses and Misfit Dislocations

42 Pages Posted: 6 Oct 2020

See all articles by Antonia Wagner

Antonia Wagner

TU Wien - Institute of Materials Science and Technology

David Holec

Montanuniversität Leoben - Department of Materials Science

Paul Heinz Mayrhofer

Vienna University of Technology - Institute of Materials Science and Technology

Matthias Bartosik

Vienna University of Technology - Institute of Materials Science and Technology

Date Written: 2020

Abstract

Super-lattice (SL) thin films composed of refractory ceramics unite extremely high hardness and enhanced fracture toughness; a material combination often being mutually exclusive. While the hardness enhancement obtained when two materials form a super-lattice is well described by existing models based on dislocation mobility, the underlying mechanisms behind the increase in fracture toughness are yet to be unraveled.Here we provide a model based on linear elasticity theory to predict the fracture toughness enhancement in (semi-)epitaxial nano-layers due to coherency stresses and formation of misfit dislocations. We exemplary study a super-lattice structure composed of two cubic transition metal nitrides (TiN, CrN) on a MgO (100) single-crystal substrate. Minimization of the overall strain energy, each time a new layer is added on the nano-layered stack, allows estimating the density of misfit dislocations formed at the interfaces. The evolving coherency stresses, which are partly relaxed by the misfit dislocations, are then used to calculate the apparent fracture toughness of respective SL architectures by applying the weight function method.The results show that the critical stress intensity increases steeply with increasing bi-layer period for very thin (essentially dislocation-free) SLs, before the KIC values decline more gently along with the formation of misfit dislocations. The characteristic KIC vs. bi-layer-period-dependence nicely matches experimental trends. Importantly, all critical stress intensity values of the super-lattice films clearly exceed the intrinsic fracture toughness of the constituting layer materials, evincing the importance of coherency stresses for increasing the crack growth resistance.

Keywords: Thin Films, Super-Lattice, Misfit Dislocations, Residual Stresses, Coherency Stresses

Suggested Citation

Wagner, Antonia and Holec, David and Mayrhofer, Paul Heinz and Bartosik, Matthias, Enhanced Fracture Toughness in Ceramic Superlattice Thin Films: On the Role of Coherency Stresses and Misfit Dislocations (2020). Available at SSRN: https://ssrn.com/abstract=3694125 or http://dx.doi.org/10.2139/ssrn.3694125

Antonia Wagner (Contact Author)

TU Wien - Institute of Materials Science and Technology ( email )

Vienna, 1060
Austria

David Holec

Montanuniversität Leoben - Department of Materials Science

Leoben
Austria

Paul Heinz Mayrhofer

Vienna University of Technology - Institute of Materials Science and Technology

Karlsplatz 13
Vienna
Austria

Matthias Bartosik

Vienna University of Technology - Institute of Materials Science and Technology

Karlsplatz 13
Vienna
Austria

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Downloads
26
Abstract Views
181
PlumX Metrics