The Role of Intrinsic Stacking Fault in Facilitating the Pressure-Induced Phase Transition in CoCrFeMnNi High Entropy Alloys

55 Pages Posted: 15 Oct 2020

See all articles by C.M. Lin

C.M. Lin

National Tsing Hua University - Department of Physics

Ching-Pao Wang

Department of Earth Sciences, University of Western Ontario

Sean R. Shieh

Department of Earth Sciences, University of Western Ontario

Yao-Jen Chang

Department of Materials Science and Engineering & High Entropy Materials Center, National Tsing Hua University

Tony Huang

Department of Earth Sciences, National Cheng Kung University

Dong-Zhou Zhang

University of Hawaii at Manoa - Hawaii Institute of Geophysics and Planetology; GeoSoilEnviroCARS

Chin-Wei Wang

National Synchrotron Radiation Research Center

Jien-Wei Yeh

High Entropy Materials Center, National Tsing Hua University

An-Chou Yeh

National Tsing Hua University; Department of Materials Science and Engineering & High Entropy Materials Center, National Tsing Hua University

Jenh-Yih Juang

National Chiao Tung University - Department of Electrophysics

Abstract

The pressure-induced phase transitions in CoCrFeNi and CoCrFeMnNi high entropy alloys (HEAs) at ambient temperature at pressure up to 24.0(2) and 19.4(2) GPa, respectively, were investigated using angle-dispersive X-ray diffraction (ADXRD). Structurally at ambient pressure, both CoCrFeNi and CoCrFeMnNi HEAs consist of face-centered cubic (fcc) structure with different lattice constants which are arisen primarily from the cellular growth of alloy during solidification. Insitu ADXRD measurements revealed no evidence of structural transformation in CoCrFeNi HEAs up to 24.0(2) GPa. The intrinsic stacking fault (ISF) begins to appear at 1.7(1) GPa and sustains up to 19.4(2) GPa. Moreover, an fcc to hexagonal close-packed (hcp) structural phase transition emerges at around 7.0(1) GPa in CoCrFeMnNi HEAs. The pressure dependent lattice constants and volume compression yield the zero-pressure isothermal bulk moduli of 187(4) GPa while the normalized c/a ratio 1.636(1) for the resultant hcp phase. The quantitative correlation of the ISF diffraction intensity shows that the appearance of ISF disrupts the crystal lattice to trigger, at around 7.0(1) GPa, fcc-to-hcp phase transition which persists sluggishly to the highest experiment pressure. Neutron powder diffraction (NPD) at pressure up to 8.9(2) GPa was performed in CoCrFeMnNi HEAs at ambient temperature to clarify the significance of pressure induced suppression of local magnetic moment on destabilization of the initial fcc structure. The results, however, suggest that the magnetism may only play a minor role, if not none, in facilitating the pressure-induced fcc-to-hcp phase transition in CoCrFeMnNi HEAs.

Keywords: CoCrFeNi, CoCrFeMnNi, intrinsic stacking fault (ISF), fcc-to-hcp phase transition

Suggested Citation

Lin, C.M. and Wang, Ching-Pao and Shieh, Sean R. and Chang, Yao-Jen and Huang, Tony and Zhang, Dong-Zhou and Wang, Chin-Wei and Yeh, Jien-Wei and Yeh, An-Chou and Juang, Jenh-Yih, The Role of Intrinsic Stacking Fault in Facilitating the Pressure-Induced Phase Transition in CoCrFeMnNi High Entropy Alloys. Available at SSRN: https://ssrn.com/abstract=3711254 or http://dx.doi.org/10.2139/ssrn.3711254

C.M. Lin (Contact Author)

National Tsing Hua University - Department of Physics ( email )

Hsinchu
Taiwan

Ching-Pao Wang

Department of Earth Sciences, University of Western Ontario ( email )

Sean R. Shieh

Department of Earth Sciences, University of Western Ontario ( email )

Yao-Jen Chang

Department of Materials Science and Engineering & High Entropy Materials Center, National Tsing Hua University ( email )

Tony Huang

Department of Earth Sciences, National Cheng Kung University

Dong-Zhou Zhang

University of Hawaii at Manoa - Hawaii Institute of Geophysics and Planetology ( email )

GeoSoilEnviroCARS ( email )

Chin-Wei Wang

National Synchrotron Radiation Research Center ( email )

Jien-Wei Yeh

High Entropy Materials Center, National Tsing Hua University

An-Chou Yeh

National Tsing Hua University ( email )

Department of Materials Science and Engineering & High Entropy Materials Center, National Tsing Hua University ( email )

Jenh-Yih Juang

National Chiao Tung University - Department of Electrophysics ( email )

Hsinchu, 30010
Taiwan

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Downloads
62
Abstract Views
907
Rank
774,683
PlumX Metrics