Nonparametric Estimation of Copulas for Time Series
FAME Research Paper No. 57
37 Pages Posted: 12 Mar 2003
Date Written: November 2002
Abstract
We consider a nonparametric method to estimate copulas, i.e. functions linking joint distributions to their univariate margins. We derive the asymptotic properties of kernel estimators of copulas and their derivatives in the context of a multivariate stationary process satisfactory strong mixing conditions. Monte Carlo results are reported for a stationary vector autoregressive process of order one with Gaussian innovations. An empirical illustration is given for European and US stock index returns. Another empirical illustration deals with Danish data on fire insurance losses.
JEL Classification: C14, D81, G10, G21, G22
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation
-
Modelling Time-Varying Exchange Rate Dependence Using the Conditional Copula
-
Estimation of Copula Models for Time Series of Possibly Different Lengths
-
By Teng-suan Ho, Richard C. Stapleton, ...
-
A General Approach to Integrated Risk Management with Skewed, Fat-Tailed Risk
-
A General Approach to Integrated Risk Management with Skewed, Fat-Tailed Risk