Optimized Configuration to Reduce H2 Carbon Footprint in a Refinery

Proceedings of the 15th Greenhouse Gas Control Technologies Conference 15-18 March 2021

14 Pages Posted: 8 Apr 2021

See all articles by Mathieu Leclerc

Mathieu Leclerc

Air Liquide Engineering & Construction

Guillaume Rodrigues

Air Liquide E&C France

Richard Dubettier

Air Liquide E&C

Sidonie Ruban

Air Liquide Engineering & Construction

Date Written: March 18, 2021

Abstract

As hydrogen is increasingly being recognized as a critical energy vector in the energy transition, capturing CO2 from existing H2 production facilities plays a significant role towards decarbonisation. In a refinery, the H2 production process contains the most concentrated CO2 streams, namely the off-gas from the H2 PSA (containing 40-50%v CO2), and the flue gas from SMR burners (containing 20-25%v CO2).

Air Liquide, as one of the leaders for H2 production, has industrialized Cryocap™ H2, combining membranes and cryogenic solutions to capture CO2 most efficiently, at the lowest cost, and at a very high purity. On top of capturing and liquefying the CO2 in one step, one of its salient features is the ability to boost the hydrogen production of a plant by ~10% to 20% further decreasing the SMR carbon footprint.

This paper illustrates the impact of cost-effective partial capture technology choices (e.g. amine wash versus Cryocap™ H2) and optimization path on the CO2 emissions reduction rate for various scopes of emissions, power grid footprint, and network configuration within a refinery.

It was found that the CO2 emissions reduction rate on Scope 1 for an Amine Wash is decreased to 56% (compared to the typical 60% reduction rate) due to additional steam consumption. On the contrary, it is increased to 62% with Cryocap™ H2, and further to 80% thanks to the additional hydrogen production allowing a reduced load on other H2 production on the network. All emission scopes considered, Cryocap™ H2 is significantly more efficient in terms of carbon footprint reduction than the solvent technology regardless of the power grid footprint and the way additional steam is produced (i.e. natural gas versus electric boiler).

Keywords: hydrogen, carbon capture, amine wash, Cryocap, refinery, carbon footprint

Suggested Citation

Leclerc, Mathieu and Rodrigues, Guillaume and Dubettier, Richard and Ruban, Sidonie, Optimized Configuration to Reduce H2 Carbon Footprint in a Refinery (March 18, 2021). Proceedings of the 15th Greenhouse Gas Control Technologies Conference 15-18 March 2021, Available at SSRN: https://ssrn.com/abstract=3820891 or http://dx.doi.org/10.2139/ssrn.3820891

Mathieu Leclerc (Contact Author)

Air Liquide Engineering & Construction ( email )

54 avenue Carnot
Champigny sur Marne, 94500
France
94500 (Fax)

Guillaume Rodrigues

Air Liquide E&C France ( email )

54 avenue Carnot
Champigny sur Marne, 94500
France
+33612646891 (Phone)
94500 (Fax)

Richard Dubettier

Air Liquide E&C ( email )

54 avenue Carnot
Champigny sur Marne, 94500
France
+33616913860 (Phone)

HOME PAGE: http://https://www.airliquide.com/en/ingenierie-construction

Sidonie Ruban

Air Liquide Engineering & Construction ( email )

54 avenue Carnot
Champigny sur Marne, Franc 94500
France

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Downloads
39
Abstract Views
124
PlumX Metrics