header

On the Vibration-Enhanced Thermoplastic Formability in Bulk Metallic Glasses

34 Pages Posted: 12 May 2021 Publication Status: Under Review

See all articles by Zu Li

Zu Li

Huazhong University of Science and Technology (Formerly Tongi Medical University) - School of Materials Science and Engineering

Meng Zhang

Jinan University - Institute of Advanced Wear & Corrosion Resistance and Functional Materials

Ning Li

Huazhong University of Science and Technology (Formerly Tongi Medical University) - School of Materials Science and Engineering

Abstract

Bulk metallic glasses (BMGs) hold a promising niche in the manufacture of high-performance metallic parts with intricate shapes for modern industries, wherein how to achieve superior thermoplastic formability of BMGs is most essential. In this work, vibration-enhanced thermoplastic formability was validated in 3 different types of BMGs ( i.e. Pd 40 Cu 30 Ni 10 P 20 , Zr 35 Ti 30 Be 26.75 Cu 8.25 , and La 55 Al 25 Ni 5 Cu 10 Co 5 ), suggesting that vibrational loading is a generic approach to promote the rapid forming of BMGs. Under vibrational loading, the temperature-dependent viscosity of all the 3 BMGs was found to show a more fragile behaviour at higher vibration frequency. The structural relaxation spectroscopies of the 3 BMGs after vibrational loading suggest that the vibration-enhanced formability in BMGs might originate from a unified mechanism through which vibration modulates the hierarchical atomic dynamics of BMGs. Further inspection on the fragility, structural factor, nanoindentation hardness, and relaxation enthalpy of the Pd 40 Cu 30 Ni 10 P 20 BMG indicates that the free volume content was increased at increasing vibration frequency. Aided by both experimental tests and molecular simulations, we argue that the vibration-enhanced formability in BMG is because that vibrational loading increases the free volume content while reduces the size of flow units, and most importantly, homogenises the distribution of flow units.

Suggested Citation

Li, Zu and Zhang, Meng and Li, Ning, On the Vibration-Enhanced Thermoplastic Formability in Bulk Metallic Glasses. Available at SSRN: https://ssrn.com/abstract=3844699 or http://dx.doi.org/10.2139/ssrn.3844699

Zu Li

Huazhong University of Science and Technology (Formerly Tongi Medical University) - School of Materials Science and Engineering ( email )

Wuhan, Hubei, 430074
China

Meng Zhang (Contact Author)

Jinan University - Institute of Advanced Wear & Corrosion Resistance and Functional Materials ( email )

China

Ning Li

Huazhong University of Science and Technology (Formerly Tongi Medical University) - School of Materials Science and Engineering ( email )

Wuhan, Hubei, 430074
China

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Abstract Views
59
Downloads
7
PlumX Metrics