Loss Function Assumptions in Rational Expectations Tests on Financial Analysts' Earnings Forecasts
Emory University Working Paper
40 Pages Posted: 9 Apr 2003
There are 2 versions of this paper
Loss Function Assumptions in Rational Expectations Tests on Financial Analysts' Earnings Forecasts
Date Written: February 26, 2002
Abstract
Prior research concludes that financial analysts do not process public information efficiently in generating their earnings forecasts. The OLS regression-based tests used in prior studies assume implicitly that analysts face a quadratic loss function, or that analysts minimize their squared forecast errors. In contrast, we argue that analysts face a linear loss function, or that they minimize their absolute forecast errors. We conduct and compare rational expectations tests conditioned on these two alternative loss functions. While we replicate prior findings of inefficiency with OLS regressions, we find virtually no evidence of forecast inefficiency with Least Absolute Deviation regressions, where we explicitly assume a linear loss function.
Keywords: unbiased, economic significance, analyst rankings, conditional median, performance evaluation
JEL Classification: G10, G29, M41, D84
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Can Investors Profit from the Prophets? Consensus Analyst Recommendations and Stock Returns
By Brad M. Barber, Reuven Lehavy, ...
-
Security Analysts' Career Concerns and Herding of Earnings Forecasts
By Jeffrey D. Kubik, Amit Solomon, ...
-
By Patricia Dechow, Amy P. Hutton, ...
-
Analyzing the Analysts: When Do Recommendations Add Value?
By Narasimhan Jegadeesh, Joonghyuk Kim, ...
-
An Empirical Analysis of Analysts' Target Prices: Short Term Informativeness and Long Term Dynamics
By Alon Brav and Reuven Lehavy
-
How Do Analysts Use Their Earnings Forecasts in Generating Stock Recommendations?