header

Entity Summarization: State of the Art and Future Challenges

25 Pages Posted: 19 Oct 2021 Publication Status: Accepted

See all articles by Qingxia Liu

Qingxia Liu

Nanjing University - State Key Laboratory for Novel Software Technology

Gong Cheng

Nanjing University - National Key Laboratory for Novel Software Technology

Kalpa Gunaratna

Samsung Research America

Yuzhong Qu

Nanjing University - National Key Laboratory for Novel Software Technology

Multiple version iconThere are 2 versions of this paper

Abstract

The increasing availability of semantic data has substantially enhanced Web applications. Semantic data such as RDF data is commonly represented as entity-property-value triples. The magnitude of semantic data, in particular the large number of triples describing an entity, could overload users with excessive amounts of information. This has motivated fruitful research on automated generation of summaries for entity descriptions to satisfy users' information needs efficiently and effectively. We focus on this prominent topic of entity summarization, and our research objective is to present the first comprehensive survey of entity summarization research. Rather than separately reviewing each method, our contributions include (1) identifying and classifying technical features of existing methods to form a high-level overview, (2) identifying and classifying frameworks for combining multiple technical features adopted by existing methods, (3) collecting known benchmarks for intrinsic evaluation and efforts for extrinsic evaluation, and (4) suggesting research directions for future work. By investigating the literature, we synthesized two hierarchies of techniques. The first hierarchy categories generic technical features into several perspectives: frequency and cen-trality, informativeness, and diversity and coverage. In the second hierarchy we present domain-specific and task-specific technical features, including the use of domain knowledge, context awareness, and personalization. Our review demonstrated that existing methods are mainly unsupervised and they combine multiple technical features using various frameworks: random surfer models, similarity-based grouping, MMR-like re-ranking, or combinatorial optimization. We also found a few deep learning based methods in recent research. Current evaluation results and our case study showed that the problem of entity summarization is still far from being solved. Based on the limitations of existing methods revealed in the review, we identified several future directions: the use of semantics, human factors, machine and deep learning, non-extractive methods, and interactive methods.

Suggested Citation

Liu, Qingxia and Cheng, Gong and Gunaratna, Kalpa and Qu, Yuzhong, Entity Summarization: State of the Art and Future Challenges. Journal of Web Semantics First Look , Available at SSRN: https://ssrn.com/abstract=3945397 or http://dx.doi.org/10.2139/ssrn.3945397

Qingxia Liu (Contact Author)

Nanjing University - State Key Laboratory for Novel Software Technology ( email )

Nanjng
China

Gong Cheng

Nanjing University - National Key Laboratory for Novel Software Technology ( email )

Nanjing, Jiangsu 210093
China

Kalpa Gunaratna

Samsung Research America ( email )

Mountain View, CA
United States

Yuzhong Qu

Nanjing University - National Key Laboratory for Novel Software Technology ( email )

Nanjing, Jiangsu 210093
China

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Abstract Views
54
Downloads
5
PlumX Metrics