Climate Change Induced Reduction in Agricultural Land Suitability of West-Africa's Inland Valley Landscapes

40 Pages Posted: 16 Feb 2022

See all articles by Komlavi AKPOTI

Komlavi AKPOTI

affiliation not provided to SSRN

Thomas Groen

affiliation not provided to SSRN

Elliott Dossou-Yovo

Africa Rice Center (WARDA)

Amos Tiereyangn Kabo-bah

University of Energy and Natural Resources (UENR) - Department of Civil and Environmental Engineering

Sander J. Zwart

affiliation not provided to SSRN

Abstract

CONTEXTAlthough rice production has increased significantly in the last decade in West Africa, the region is far from being rice self-sufficient. Inland valleys (IVs) with their relatively higher water content and soil fertility compared to the surrounding uplands are the main rice-growing agroecosystem. They are being promoted by governments and development agencies as future food baskets of the region. However, West Africa’s crop production is estimated to be negatively affected by climate change due to the strong dependence of its agriculture on rainfall. OBJECTIVEThe main objective of the study is to apply a set of machine learning models to quantify the extent of climate change impact on land suitability for rice using the presence of rice-only data in IVs along with bioclimatic indicators. METHODSWe used a spatially explicit modeling approach based on correlative Ecological Niche Modeling. We deployed 4 algorithms (Boosted Regression Trees, Generalized Linear Model, Maximum Entropy, and Random Forest) for 4-time periods (the 2030s, 2050s, 2070s, and 2080s) of the 4 Representative Concentration Pathways (RCP2.6, RCP4.5, RCP6.0, and RCP8) from an ensemble set of 32 spatially downscaled and bias-corrected Global Circulation Models climate data.RESULTS AND CONCLUSIONSThe overall trend showed a decrease in suitable areas compared to the baseline as a function of changes in temperature and precipitation by the order of 22-33% area loss under the lowest reduction scenarios and more than 50% in extreme cases. Isothermality or how large the day to night temperatures oscillate relative to the annual oscillations has a large impact on area losses while precipitation increase accounts for most of the areas with no change in suitability. Strong adaptation measures along with technological advancement and adoption will be needed to cope with the adverse effects of climate change on inland valley rice areas in the sub-region.SIGNIFICANCEDemand for rice in West Africa is huge. For the rice self-sufficiency agenda of the region, “where” and “how much” land resources are available is key and requires long-term, informed planning. Farmers can only adapt when they switch to improved breeds, providing that they are suited for the new conditions. Our results stress the need for land use planning that considers potential climate change impacts to define the best areas and growing systems for the production of rice under multiple future climate change uncertainties.

Keywords: Rice Agroecosystem, ecological niche modeling, multi-GCM ensembles, machine learning, cropland, RCP Scenarios

Suggested Citation

AKPOTI, Komlavi and Groen, Thomas and Dossou-Yovo, Elliott and Kabo-bah, Amos Tiereyangn and Zwart, Sander J., Climate Change Induced Reduction in Agricultural Land Suitability of West-Africa's Inland Valley Landscapes. Available at SSRN: https://ssrn.com/abstract=4014260 or http://dx.doi.org/10.2139/ssrn.4014260

Komlavi AKPOTI (Contact Author)

affiliation not provided to SSRN ( email )

No Address Available

Thomas Groen

affiliation not provided to SSRN ( email )

No Address Available

Elliott Dossou-Yovo

Africa Rice Center (WARDA)

Amos Tiereyangn Kabo-bah

University of Energy and Natural Resources (UENR) - Department of Civil and Environmental Engineering

Sunyani, +233
Ghana

Sander J. Zwart

affiliation not provided to SSRN ( email )

No Address Available

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Downloads
108
Abstract Views
252
Rank
479,563
PlumX Metrics