Big Data Affirmative Action

75 Pages Posted: 3 Feb 2022 Last revised: 9 May 2022

See all articles by Peter Salib

Peter Salib

University of Houston Law Center

Date Written: February 2, 2022

Abstract

As a vast and ever-growing body of social-scientific research shows, discrimination remains pervasive in the United States. In education, work, consumer markets, healthcare, criminal justice, and more, Black people fare worse than whites, women worse than men, and so on. Moreover, the evidence now convincingly demonstrates that this inequality is caused by discrimination, not other factors. Yet solutions are scarce. The best empirical studies find that popular interventions—like diversity seminars and anti-bias trainings—have little or no effect. And more muscular solutions—like hiring quotas or school bussing—are now regularly struck down as illegal. Indeed, in the last 30 years, the Supreme Court has invalidated every such ambitious affirmative action plan that it has reviewed.

This Article proposes a novel solution: Big Data Affirmative Action. Like old-fashioned affirmative action, Big Data Affirmative Action would award benefits to individuals because of their membership in protected groups. Since Black defendants are discriminatorily incarcerated for longer than whites, Big Data Affirmative Action would intervene to reduce their sentences. Since women are paid less than men, it would step in to raise their salaries. But unlike old-fashioned affirmative action, Big Data Affirmative Action would be automated, algorithmic, and precise. Circa 2021, data scientists are already analyzing rich datasets to identify and quantify discriminatory harm. Armed with such quantitative measures, Big Data Affirmative Action algorithms would intervene to automatically adjust flawed human decisions—correcting discriminatory harm, but going no further.

Big Data Affirmative Action has two advantages over the alternatives. First, it would actually work. Unlike, say, anti-bias trainings, Big Data Affirmative Action would operate directly on unfair outcomes, immediately remedying discriminatory harm. Second, Big Data Affirmative Action would be legal, notwithstanding the Supreme Court’s recent case law. As argued here, the Court has not, in fact, recently turned against affirmative action. Rather, it has consistently demanded that affirmative action policies both stand on solid empirical ground and be well-tailored to remedying only particularized instances of actual discrimination. The policies that the Court has recently rejected failed to do either. Big Data Affirmative Action can easily do both.

Suggested Citation

Salib, Peter, Big Data Affirmative Action (February 2, 2022). Northwestern University Law Review, (Forthcoming), U of Houston Law Center No. 2022-A-4, Available at SSRN: https://ssrn.com/abstract=4024623

Peter Salib (Contact Author)

University of Houston Law Center ( email )

4104 Martin Luther King Blvd.
Houston, TX 77204
United States

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Downloads
127
Abstract Views
582
rank
306,244
PlumX Metrics