Bayesboost: Identifying and Handling Bias Using Synthetic Data Generators

17 Pages Posted: 8 Mar 2022

See all articles by Barbara Draghi

Barbara Draghi

affiliation not provided to SSRN

Zhenchen Wang

affiliation not provided to SSRN

Puja Myles

University of Nottingham - Division of Epidemiology and Public Health

Allan Tucker

affiliation not provided to SSRN

Abstract

Advanced synthetic data generators can model sensitive personal datasets by creating simulated samples of data with realistic correlation structures and distributions, but with a greatly reduced risk of identifying individuals. This has huge potential in medicine where sensitive patient data can be simulated and shared, enabling the development and robust validation of new AI technologies for diagnosis and disease management. However, even when massive ground truth datasets are available (such as UK-NHS databases which contain patient records in the order of millions) there is a high risk that biases still exist which are carried over to the data generators. For example, certain cohorts of patients may be under-represented due to cultural sensitivities amongst some communities, or due to institutionalised procedures in data collection. The under-representation of groups is one of the forms in which bias can manifest itself in machine learning, and it is the one we investigate in this work. These factors may also lead to structurally missing data or incorrect correlations and distributions which will be mirrored in the synthetic data generated from biased ground truth datasets. In this paper, we explore methods to improve synthetic data generators by using probabilistic methods to firstly identify the under-represented samples in ground truth data, and then to boost these types of data when generating synthetic samples. The paper explores attempts to create synthetic data that contain more realistic distributions and that lead to predictive models with better performance.

Keywords: Synthetic data generators, data bias, over-sampling, Bayesian network

Suggested Citation

Draghi, Barbara and Wang, Zhenchen and Myles, Puja and Tucker, Allan, Bayesboost: Identifying and Handling Bias Using Synthetic Data Generators. Available at SSRN: https://ssrn.com/abstract=4052302 or http://dx.doi.org/10.2139/ssrn.4052302

Barbara Draghi (Contact Author)

affiliation not provided to SSRN ( email )

No Address Available

Zhenchen Wang

affiliation not provided to SSRN ( email )

No Address Available

Puja Myles

University of Nottingham - Division of Epidemiology and Public Health ( email )

Nottingham, NG5 1PB
United Kingdom

Allan Tucker

affiliation not provided to SSRN ( email )

No Address Available

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Downloads
26
Abstract Views
97
PlumX Metrics