In Situ Preparation of Al@Pfhp@Gap High-Energy Material
25 Pages Posted: 21 Mar 2022
Abstract
Fluoride coating can reduce the ignition temperature, enhance the burning rate and inhibit the agglomeration of aluminum powder. However, the addition of non-energetic fluoride can reduce the energy of aluminum powder. In this study, for the first time, 3-Perfluorohexyl-1, 2-epoxypropane (PFHP) was coated on the surface of aluminum powder, which reacted with glycidyl azide polymer (GAP) in situ to form core-shell Al@PFHP@GAP. Compared with raw aluminum powder, Al@PFHP@GAP not only significantly reduced ignition temperature (about 150 ℃), but also greatly improved the combustion efficiency (from 87.7% to 97.6%). Besides, the heat of combustion was also greatly increased by 6.3%, compared with that of raw aluminum powder. Such performances were outstanding among the existing coated Al. In addition, the formation of coating shell effectively improved the hydrophobicity and corrosion resistance of the aluminum powder. In a word, our derived Al@PFHP@GAP provided a novel rationale for aluminum powder with greatly enhanced combustion performance.
Keywords: aluminum, core-shell, in situ, high-energy
Suggested Citation: Suggested Citation