Automatic Urticaria Activity Score (AUAS): A Novel Technology for Urticaria Severity Assessment Based on Automatic High-Precision Hive Counting

42 Pages Posted: 23 Apr 2022

See all articles by Taig Mac Carthy

Taig Mac Carthy

Legit.Health - Department of Clinical Endpoint Innovation

Ignacio Hernández Montilla

Legit.Health

Andy Aguilar

Legit.Health

Rubén García Castro

affiliation not provided to SSRN

Ana María González Pérez

Complejo Asistencial de Zamora

Alejandro Vilas Sueiro

affiliation not provided to SSRN

Laura Vergara de la Campa

affiliation not provided to SSRN

Fernando Alfageme Roldán

affiliation not provided to SSRN

Alfonso Medela

Legit.Health

Abstract

Chronic urticaria (CU) is a chronic skin disease that affects up to 1% of the general population worldwide, with Chronic spontaneous urticaria (CSU) accounting for more than two thirds of all CU cases. The Urticaria Activity Score (UAS) is a dynamic severity assessment tool that can be incorporated into the doctor’s daily clinical practice, as well as clinical trials for treatments. The UAS helps in measuring disease severity and guiding the therapeutic strategy. However, UAS assessment is a time-consuming and manual process, with high inter-observer variability and high dependence on the observer. To tackle this issue, we introduce AUAS, an automatic equivalent of UAS that deploys a deep learning lesion-detecting algorithm, called Legit.Health-UAS-HiveNet. Our results show that our algorithm assesses the severity of CU cases with a performance comparable to that of expert physicians. Furthermore, the algorithm can be implemented into CADx systems to support doctors in their clinical practice and act as a new endpoint in clinical trials. This proves the usefulness of artificial intelligence in the practice of evidence-based medicine: algorithms trained on the consensus of large clinical boards have the potential of empowering clinicians in their daily practice and replacing current standard clinical endpoints in clinical trials.

Note:
Funding Information: This project has been funded by the Department of Economic Development and Infrastructures of the Basque Government (HAZITEK Program) and the European Regional Development Fund (ERDF).

Declaration of Interests: The authors state no conflict of interest.

Keywords: Chronic urticaria, UAS, UAS7, Artificial Intelligence, Automatic severity assessment, CADx system

Suggested Citation

Mac Carthy, Taig and Hernández Montilla, Ignacio and Aguilar, Andy and García Castro, Rubén and González Pérez, Ana María and Vilas Sueiro, Alejandro and Vergara de la Campa, Laura and Alfageme Roldán, Fernando and Medela, Alfonso, Automatic Urticaria Activity Score (AUAS): A Novel Technology for Urticaria Severity Assessment Based on Automatic High-Precision Hive Counting. Available at SSRN: https://ssrn.com/abstract=4082860 or http://dx.doi.org/10.2139/ssrn.4082860

Taig Mac Carthy (Contact Author)

Legit.Health - Department of Clinical Endpoint Innovation

Spain

Andy Aguilar

Legit.Health ( email )

Rubén García Castro

affiliation not provided to SSRN ( email )

No Address Available

Ana María González Pérez

Complejo Asistencial de Zamora ( email )

Spain

Alejandro Vilas Sueiro

affiliation not provided to SSRN ( email )

No Address Available

Laura Vergara de la Campa

affiliation not provided to SSRN ( email )

No Address Available

Fernando Alfageme Roldán

affiliation not provided to SSRN ( email )

No Address Available

Alfonso Medela

Legit.Health

Bilbao, 48013
Spain

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Downloads
49
Abstract Views
378
PlumX Metrics