Analysis of Coupled Heat & Mass Transfer During Gas Hydrate Formation in Bubble Column Reactors

26 Pages Posted: 25 Apr 2022

See all articles by Aritra Kar

Aritra Kar

University of Texas at Austin

Vaibhav Bahadur

University of Texas at Austin - Walker Department of Mechanical Engineering

Abstract

Gas hydrates have promising applications in gas separation, carbon capture, desalination and gas storage. Although there exist several studies on modeling hydrate growth, analysis of the coupled role of heat and mass transfer on hydrate formation has been largely neglected. Presently, we develop a fundamentals-based simulations framework which accounts for mass transfer, heat transfer and various interfacial phenomena associated with gas hydrate formation in a bubble column reactor. We model CO 2 separation from syngas via CO 2 hydrate formation, and validate against experiments from another study. This model is used to quantify the impact of various operating parameters (gas flow rate, bubble size, reactor pressure, inlet gas temperature, reactor geometry) on hydrate formation rate and gas-to-hydrate conversion factor. Results provide several insights related to the intricate transport phenomena that underlie hydrate formation. Firstly, we highlight the adverse impact of inadequate heat dissipation on hydrate formation rate and conversion factor. This is particularly important for high gas flow rates, wherein high hydrate formation rate triggers substantial temperature rise. Enhancing thermal conductivity of hydrate forming media can significantly enhance formation, with a 2X increase in conversion factor seen. Secondly, simulations show that bubbles < 100 diameter are essential to realize high growth rates. Thirdly, increasing reactor pressure can significantly improve the maximum theoretical separation efficiency for CO 2 to > 90%. Fourthly, precooling the inlet gas enhances hydrate formation rates by upto 5%. Overall, this work outlines a novel approach to modeling hydrate formation and provides a tool for process optimization.

Keywords: CO2 hydrate, Bubble column reactor, heat transfer, mass transfer, subcooling, gas separation

Suggested Citation

Kar, Aritra and Bahadur, Vaibhav, Analysis of Coupled Heat & Mass Transfer During Gas Hydrate Formation in Bubble Column Reactors. Available at SSRN: https://ssrn.com/abstract=4092242 or http://dx.doi.org/10.2139/ssrn.4092242

Aritra Kar

University of Texas at Austin ( email )

2317 Speedway
Austin, TX 78712
United States

Vaibhav Bahadur (Contact Author)

University of Texas at Austin - Walker Department of Mechanical Engineering ( email )

United States

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Downloads
12
Abstract Views
48
PlumX Metrics