Rate-Adapative GMM Estimators for Linear Time Series Models
48 Pages Posted: 21 May 2003
Date Written: October 2002
Abstract
In this paper we analyze Generalized Method of Moments (GMM) estimators for time series models as advocated by Hansen and Singleton. It is well known that these estimators achieve efficiency bounds if the number of lagged observations in the instrument set goes to infinity. However, to this date no data dependent way of selecting the number of instruments in a finite sample is available. This paper derives an asymptotic mean squared error (MSE) approximation for the GMM estimator. The optimal number of instruments is selected by minimizing a criterion based on the MSE approximation. It is shown that the fully feasible version of the GMM estimator is higher order adaptive. In addition a new version of the GMM estimator based on kernel weighted moment conditions is proposed. The kernel weights are selected in a data-dependent way. Expressions for the asymptotic bias of kernel weighted and standard GMM estimators are obtained. It is shown that standard GMM procedures have a larger asymptotic bias and MSE than optimal kernel weighted GMM. A bias correction for both standard and kernel weighted GMM estimators is proposed. It is shown that the bias corrected version achieves a faster rate of convergence of the higher order terms of the MSE than the uncorrected estimator.
Keywords: Time Series, Feasible GMM, Number of Instruments, Rate-adaptive Kernels, Higher Order Adaptive, Bias Correction
JEL Classification: C13, C32
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Instrumental Variables Regression with Weak Instruments
By Douglas Staiger and James H. Stock
-
Testing for Weak Instruments in Linear IV Regression
By James H. Stock and Motohiro Yogo
-
Testing for Weak Instruments in Linear IV Regression
By James H. Stock and Motohiro Yogo
-
A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments
By James H. Stock, Jonathan H. Wright, ...
-
Instrument Relevance in Multivariate Linear Models: A Simple Measure
By John Shea
-
By Charles R. Nelson and Richard Startz
-
Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator
By Charles R. Nelson and Richard Startz
-
A New Specification Test for the Validity of Instrumental Variables
By Jinyong Hahn and Jerry A. Hausman
-
Consistent Estimation with a Large Number of Weak Instruments
By John C. Chao and Norman R. Swanson
-
Does Head Start Make a Difference?
By Janet Currie and Duncan Thomas