Dirac Cones in Graphene Grown on a Half-Filled 4d-Band Transition Metal

25 Pages Posted: 25 Jun 2022

See all articles by Antonio Javier Martínez-Galera

Antonio Javier Martínez-Galera

affiliation not provided to SSRN

Haojie Guo

affiliation not provided to SSRN

Mariano D. Jiménez-Sánchez

affiliation not provided to SSRN

Enrique G. Michel

affiliation not provided to SSRN

José M. Gómez-Rodríguez

affiliation not provided to SSRN

Multiple version iconThere are 2 versions of this paper

Abstract

New opportunities for structural and electronic properties engineering of graphene can be achieved by tuning the interfacial interaction, which is ruled by the interplay between d-band filling and geometry of the support. Here, is demonstrated the growth of graphene, featuring Dirac cones around the Fermi level, on the rectangular (110) surfaces of Rh, a half-filled 4d-band transition metal element. The analysis of the structural properties by LEED and STM shows that domains with a continuum of possible graphene-substrate orientations with angular scatter of around 10° coexist in graphene/Rh(110) surfaces. Within each domain, surface structure is characterized by a distinct stripe-like moiré pattern. The interfacial chemistry analysis, by μ-XPS, of all the rotational domains studied, demonstrates the existence of two main levels of interfacial interaction strength, similar to previously reported graphene-metal systems characterized by the absence of Dirac cones around the Fermi level. However, the band structures of these domains probed by μ-ARPES present Dirac cones, with Fermi velocities comparable with those previously reported on weakly coupled graphene layers. Both the unique properties of graphene/Rh(110) surfaces and the prospect to obtain novel graphene-metal interfaces through the interplay between d-band filling and geometry, are expected to open new opportunities to study phenomena up to now masked behind the interaction with the substrate.

Keywords: Graphene, STM, ARPES, XPS, Tunneling height barriers

Suggested Citation

Martínez-Galera, Antonio Javier and Guo, Haojie and Jiménez-Sánchez, Mariano D. and Michel, Enrique G. and Gómez-Rodríguez, José M., Dirac Cones in Graphene Grown on a Half-Filled 4d-Band Transition Metal. Available at SSRN: https://ssrn.com/abstract=4146280 or http://dx.doi.org/10.2139/ssrn.4146280

Antonio Javier Martínez-Galera (Contact Author)

affiliation not provided to SSRN ( email )

No Address Available

Haojie Guo

affiliation not provided to SSRN ( email )

No Address Available

Mariano D. Jiménez-Sánchez

affiliation not provided to SSRN ( email )

No Address Available

Enrique G. Michel

affiliation not provided to SSRN ( email )

No Address Available

José M. Gómez-Rodríguez

affiliation not provided to SSRN ( email )

No Address Available

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Downloads
15
Abstract Views
57
PlumX Metrics