Climate disruption caused by a decline in marine biodiversity and pollution

Dryden, H., & Duncan, D. (2022). Climate Disruption Caused by a Decline in Marine Biodiversity and Pollution. International Journal of Environment and Climate Change, 12(11), 3414-3436. https://doi.org/10.9734/ijecc/2022/v12i111392

23 Pages Posted: 8 Sep 2022 Last revised: 31 Oct 2022

Date Written: September 5, 2022

Abstract

Highlights
• The SML could be as important as carbon but has not been factored into the climate change model, solutions are presented
• The SML regulates atmospheric water vapour pressure, temperature, cloud formation and precipitation
• Lipophilic toxic chemicals, microplastic and black carbon concentrate in the SML and return to land in rainwater, after several weeks
• Lipophilic toxic chemicals, microplastic and black carbon are toxic to plankton and all marine life, they do not dilute or become dispersed in oceanic water.
• Marine plankton are the lungs for the planet and earths life support system, 50% have been lost since 1950’s decline continues at 1% year on year
• There will be a trophic cascade collapse of the entire marine ecosystem as the pH approaches pH7.95 by 2045, resulting in catastrophic climate disruption and global ecosystem crash on land and in the oceans


Abstract

The world has focused on carbon mitigation as the only solution for climate change. This discussion paper considers how marine biodiversity regulates the climate, and the factors that control marine biodiversity.

The main greenhouse gas (GHG) is water vapor, which accounts for 75% of all GHGs; the second most important is carbon dioxide, followed by methane and particulates such as black carbon (BC) soot. The concentration of water vapor in the atmosphere is regulated by air temperature; warmer conditions lead to higher evaporation, which in turn increases the concentration of water vapor, the Clausius-Clapeyron relation. This means that as the oceans and atmosphere warm, a self-reinforcing feedback loop accelerates the evaporation process to cause further warming.

It is not considered possible to directly regulate atmospheric water vapor. This explains why climate change mitigation strategies have focussed primarily on reducing carbon dioxide emissions as the means to reduce water vapor. This report concludes that the current climate change mitigation strategy will not work on its own because it depends on decreasing the concentration of atmospheric carbon dioxide and on the assumption that water vapor is only regulated by temperature.

71% of planet Earth is covered by an ocean that has a surface microlayer (SML) between 1 µm and 1000µm deep, composed of lipids and surfactants produced by marine phytoplankton. This SML layer is known to promote the formation of aerosols and clouds; it also reduces the escape of water molecules and slows the transfer of thermal energy to the atmosphere. The concentration of water vapor is increasing in our atmosphere, and 100% of this increase is evaporation from the ocean surface; water vapour from land systems is decreasing. This means that the oceans are almost entirely responsible for climate change.

The SML layer attracts toxic forever, lipophilic chemicals, microplastics and hydrophobic black carbon soot from the incomplete combustion of fossil fuels. Concentrations of toxic chemicals are 500 times higher in this SML layer than in the underlying water. Toxic forever chemicals combined with submicron and microplastic particles and black carbon particulates are known to be toxic to plankton. Marine primary productivity or phytoplankton photosynthesis may have declined by as much as 50% since the 1940s. Reduced phytoplankton plant growth equates to a degraded SML membrane, reduced carbon assimilation, and higher concentrations of dissolved carbon dioxide in ocean surface water, which accelerates the decline in ocean pH. The key phytoplankton species responsible for the production of the SML layer are the first to suffer from pH decline, a process called “ocean acidification”.

Ocean acidification will lead to a regime shift away from the key carbonate-based species and diatoms below pH 7.95 which will be reached by 2045. The SML layer will decrease, allowing evaporation and atmospheric water vapor concentrations to increase. A reduced SML layer will lead to fewer aerosols, cloud formation and precipitation, as well as increased humidity and temperature. When clouds form under these conditions, the higher humidity will cause torrential downpours and flooding. The result could be catastrophic climate change, even if we achieve net zero by 2050. In parallel, ocean acidification and the collapse of the marine ecosystem could also lead to the loss of most seals, birds, whales, fish, and food supply for 3 billion people.

Keywords: Ocean blanket, sml, climate, disruption, plankton, phytoplankton, aerosol, humidity, clouds marine

JEL Classification: Q50, Q52, Q53, Q54

Suggested Citation

Dryden, Howard and Duncan, Diane, Climate disruption caused by a decline in marine biodiversity and pollution (September 5, 2022). Dryden, H., & Duncan, D. (2022). Climate Disruption Caused by a Decline in Marine Biodiversity and Pollution. International Journal of Environment and Climate Change, 12(11), 3414-3436. https://doi.org/10.9734/ijecc/2022/v12i111392, Available at SSRN: https://ssrn.com/abstract=4210551 or http://dx.doi.org/10.2139/ssrn.4210551

Howard Dryden (Contact Author)

Goes Foundation ( email )

Roslin Innovation Centre
Edinburgh University
Edinburgh, EH25 9RG
United Kingdom
07748701275 (Phone)
07748701275 (Fax)

HOME PAGE: http://www.GoesFoundation.com

Diane Duncan

Clean Water Wave CIC ( email )

Roslin Innovation Centre
Edinburgh University
Edinburgh, EH25 9RG
United Kingdom

HOME PAGE: http://www.CleanWaterWave.com

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Downloads
832
Abstract Views
4,211
rank
43,376
PlumX Metrics