Active Chatter Suppression Through Virtual Inerter-Based Passive Absorber Control
7 Pages Posted: 16 Nov 2022 Last revised: 1 Feb 2023
Date Written: November 30, 2022
Abstract
The role of inerter-based devices has generated considerable interest in terms of suppressing the vibrations in machines and structures. The inerter is a mechanical device that generates force proportional to the relative acceleration between its terminals. Recently, it has been shown that inerter-based dynamic vibration absorbers (IDVAs, for the mass ratios between 0 and 0.2) can improve the chatter suppression performance compared to a traditional tuned mass damper (TMD) for the same mass ratios. This study proposes an IDVA applied to machining operations as a novel active control method to increase chatter suppression performance. Considering the TMD application as a virtual passive absorber (VPA) method in active control, IDVAs can be potentially employed in the same framework. A proof-mass actuator, which is mounted on a beam that is designed to support a flexible structure, is proposed. Once the IDVA parameters are optimised, a time-domain model is applied to explore the actuator saturation effects. The effect of an IDVA as a novel active control method on chatter stability is then evaluated. The simulated stability lobe diagram shows that the IDVA increases the absolute chatter stability by just above 20%. To validate the simulation results, an experimental setup is designed including a flexible workpiece to be machined and a proof-mass actuator assembled using a beam. In summary, it is shown that inerter-based dynamic vibration absorbers, as an active control method, can successfully be implemented to improve the chatter suppression performance and critical limiting depth of cut.
Keywords: Active chatter control, inerter-based dynamic vibration absorber, chatter stability, proof-mass actuator
Suggested Citation: Suggested Citation