A Techno-Economic Analysis Tool for Regional CO2 Capture, Transport, Use and Storage Scenarios

14 Pages Posted: 8 Nov 2022

See all articles by Anders Nermoen

Anders Nermoen

NORCE Energy

Roman Berenblyum

NORCE Norwegian Research Centre AS

Paula Coussy

IFPEN

Xavier Guichet

IFPEN

Paula Canteli

Spanish Geological Survey (IGME)

Paulo Mesquita

Universidade de Évora

Julio Carneiro

Universidade de Évora

Alexey Khrulenko

NORCE Norwegian Research Centre AS

Paulo Alexandre Rocha

Federal University of Ceará

Roberto Martínez Orio

Spanish Geological Survey (IGME)

Date Written: July 8, 2022

Abstract

Carbon capture from industrial, high concentration CO2 sources, combined with CO2 transport, utilization and storage (CCUS) is a way to reduce greenhouse gas emissions. CCUS will play an important role in our transition into, and, also beyond the green shift, as CCUS both significantly reduces emissions from industrial processes and offsets emissions from hard-to-remove sectors
– leading to the global net-zero society. We study here how the deployment of CCUS networks and commonly shared infrastructure could be evaluated using a dedicated techno-economic analysis tool presented here.

A scenario-approach was taken in the development of CCUS network to decarbonize industrialized regions. In this context, a scenario is defined as a planned deployment of capture, transport, utilization and storage units – each at a given location and at given time between now and 2050. The Excel-based tool presented in this paper, allows for both the design and technical-economic analysis at regional scale. It allowed to define scenarios in a time-dependent spatial network onnecting capture points to CO2-utilization factories and storage locations via transport by pipelines, or via trains, trucks, or vessels/barges.

To set up different scenarios, and to ensure both their internal consistency and comparability with each other, a dedicated tool was developed in the STRATEGY CCUS project funded though EU Horizon 2020 program (grant agreement No 837754). The tool use common input variables shared between different modules of the tool and scenarios which enables comparison between decarbonization of different regions. The tool aims to provide more realistic, and comparable estimates for future energy and material use, emissions avoided and negative emissions, revenues created by downstream industries, broken down in discounted and undiscounted costs per ton of CO2 avoided. The tool allows for future cost reductions due to technology maturation, economy
of scale and learning, as well as inflation and energy price outlooks.

This paper describes in more detail the structure of the tool, how it was used, and the lessons learned from its development. Basically, the tool underwent two development stages: The first when the internal logic was developed and the tool itself was put together, and secondly, when eight regional European teams used the tool, its quality and internal consistency significantly improved. Feedback and constructive criticism by users were paramount in the development of the tool.

Keywords: Scenario, Techno-economic, CCUS, Network analysis, pipeline, storage, utilization, ship, train, negative emissions

Suggested Citation

Nermoen, Anders and Berenblyum, Roman and Coussy, Paula and Guichet, Xavier and Canteli, Paula and Mesquita, Paulo and Carneiro, Julio and Khrulenko, Alexey and Rocha, Paulo Alexandre and Orio, Roberto Martínez, A Techno-Economic Analysis Tool for Regional CO2 Capture, Transport, Use and Storage Scenarios (July 8, 2022). Proceedings of the 16th Greenhouse Gas Control Technologies Conference (GHGT-16) 23-24 Oct 2022, Available at SSRN: https://ssrn.com/abstract=4271525 or http://dx.doi.org/10.2139/ssrn.4271525

Anders Nermoen (Contact Author)

NORCE Energy ( email )

114 Nygårdsgaten
Bergen, 5006
Norway

Roman Berenblyum

NORCE Norwegian Research Centre AS ( email )

PO Box 8046
Stavanger, 4068
Norway

Paula Coussy

IFPEN ( email )

Paula Canteli

Spanish Geological Survey (IGME) ( email )

Rios Rosas 23
Madrid
Spain

Paulo Mesquita

Universidade de Évora

R. Romão Ramalho 59
Évora, 7000-671
Portugal

Julio Carneiro

Universidade de Évora

R. Romão Ramalho 59
Évora, 7000-671
Portugal

Alexey Khrulenko

NORCE Norwegian Research Centre AS ( email )

P.O.B. 22 Nygårdstangen
Bergen, NO-5838
Norway

Paulo Alexandre Rocha

Federal University of Ceará

Fortaleza

Roberto Martínez Orio

Spanish Geological Survey (IGME)

Rios Rosas 23
Madrid
Spain

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Downloads
168
Abstract Views
651
Rank
341,912
PlumX Metrics