Multidimensional Fractal Scaling Analysis Using Higher Order Moving Average Polynomials and Its Fast Algorithm
27 Pages Posted: 11 Dec 2022
Abstract
The detrending moving average (DMA) analysis demonstrates excellent performance for the characterization of long-range correlations and fractal scaling and is performed in various research fields. The conventional DMA with a simple moving average can remove linear trends embedded in the observed time series. To improve the detrending ability of the DMA, higher-order DMA including a higher order polynomial detrending was also introduced using the SavitzkyGolay filter and its fast implementation algorithm was developed. However, the higher-order DMA applicable to higher dimensional data is yet to be well established. As the data dimension increases, an increase in the computational cost becomes a problem that needs to be resolved. Further, the implementation of the higher order DMA is a time-consuming procedure. To resolve this problem, we here proposed a fast algorithm for multidimensional DMA with higher order polynomial detrending. In the proposed algorithm, to reduce the computational complexity, parallel translation and recurrence techniques are
Keywords: Time-series analysis, fractal, Hurst exponent
Suggested Citation: Suggested Citation