Piezo-Electrocatalytic Oxidation of Methanol with Uv-Ozone Treated Wurtzite Zinc Oxide Nanostructures
23 Pages Posted: 21 Jan 2023
Abstract
Leveraging the mechanically-induced piezoelectric polarization, piezocatalysis emerges as a viable mechanism for enhancing the efficiency of catalytic processes. Nanostructured, catalytically active, rationally designed piezoelectric semiconductors can achieve high-performance catalysts for various applications using cost-effective electrocatalytic pathways, such as mechanical stimuli. Here, we design and demonstrate for the first time a cost-effective, high-performance piezo-electrocatalyst for anodic methanol oxidation, which is crucial for the practical application and deployment of direct methanol fuel cells in a variety of emerging clean energy technologies. We synthesized wurtzite ZnO nanorods and nanosheets treated with UV-O3 to characterize and compare their efficacy for piezo-electrocatalytic methanol oxidation. The generation of piezoelectric polarization charges in nanostructured semiconducting ZnO catalysts significantly increased their electrocatalytic performance. By elucidating the charge transfer between mechanically-deformed ZnO nanostructures and methanol molecules, we identified the underlying mechanism for the piezo-electrocatalytic process for methanol oxidation. The facile synthesis of high-quality ZnO nanostructures enables low-cost, scalable manufacture and direct integration into electrocatalysts whose performance could be enhanced by harvesting mechanical energy that would otherwise be wasted in the working environment.
Keywords: Piezo-electrocatalysis, methanol oxidation reaction, wurtzite ZnO
Suggested Citation: Suggested Citation