The Effects of Diversity in Algorithmic Recommendations on Digital Content Consumption: A Field Experiment

73 Pages Posted: 25 Feb 2023 Last revised: 13 Feb 2024

See all articles by Guangying Chen

Guangying Chen

Washington University in St. Louis - John M. Olin Business School

Tat Chan

Washington University in St. Louis - John M. Olin Business School

Dennis Zhang

Washington University in St. Louis - John M. Olin Business School

Senmao Liu

NetEase Cloud Music, Inc.

Yuxiang Wu

NetEase Cloud Music, Inc.

Date Written: February 11, 2024

Abstract

While social media platforms adopt personalized recommendations to stimulate user consumption and engagement, content diversification is commonly added to recommender systems, with the belief that it will encourage users to explore unfamiliar content on platforms. Yet, the consequences of this practice on user behavior and platform trade-offs remain unclear. This study addresses this gap through a partnership with a leading global music-streaming service, wherein the authors enhanced its algorithm to amplify content diversification. They then conducted a large-scale field experiment where users were randomly assigned to receive recommendations either from the platform’s current algorithm or the modified one. Surprisingly, contrary to industry assumptions, diversified recommendations did not necessarily increase users’ content consumption diversity. Overall consumption actually declined. However, focusing on active users who account for the majority of the platform’s content consumption, a 1% uptick in recommendation diversity resulted in a .55% rise in their consumption diversity without impacting overall consumption levels. The authors demonstrate that the mechanism underlying this uptick for active users is consistent with accurate predictions of user preferences. Based on the insights, the streaming service tailored its recommender system to focus on content diversification for its active users.

Keywords: Recommender Systems, Social Media Platforms, Recommendation Diversity, Field Experiment

Suggested Citation

Chen, Guangying and Chan, Tat and Zhang, Dennis and Liu, Senmao and Wu, Yuxiang, The Effects of Diversity in Algorithmic Recommendations on Digital Content Consumption: A Field Experiment (February 11, 2024). Available at SSRN: https://ssrn.com/abstract=4365121 or http://dx.doi.org/10.2139/ssrn.4365121

Guangying Chen (Contact Author)

Washington University in St. Louis - John M. Olin Business School ( email )

One Brookings Drive
Campus Box 1208
Saint Louis, MO MO 63130-4899
United States

Tat Chan

Washington University in St. Louis - John M. Olin Business School ( email )

One Brookings Drive
Campus Box 1133
St. Louis, MO 63130-4899
United States

Dennis Zhang

Washington University in St. Louis - John M. Olin Business School ( email )

One Brookings Drive
Campus Box 1133
St. Louis, MO 63130-4899
United States

Senmao Liu

NetEase Cloud Music, Inc.

Yuxiang Wu

NetEase Cloud Music, Inc.

Do you have negative results from your research you’d like to share?

Paper statistics

Downloads
462
Abstract Views
1,298
Rank
112,926
PlumX Metrics