Nanoscale Friction at the Quartz-Quartz/Kaolinite Interface
29 Pages Posted: 7 Apr 2023
Abstract
The nanoscale friction behavior of quartz-quartz and quartz-kaolinite interfaces is investigated through Molecular Dynamics simulations. The effects of normal load, sliding velocity, temperature, and hydration on the friction behavior are discussed, and the friction mechanism of quartz and quartz/kaolinite interface is revealed. The friction coefficients of all systems at different cases are obtained and compared with other experimental results for validation. The simulation results show that the stick-slip effect in all interfaces was found during the friction process, where the wavelength of friction load with sliding distance was close to the lattice constant of quartz along the sliding direction. The friction load increased with the rising normal load, and the relationship between shear stress and normal load was approximately linear. The friction coefficient and cohesion of the quartz-quartz interface could rise with the increasing sliding velocity or the decreasing temperature. Moreover, the friction coefficient of quartz-kaolinite was significantly smaller than that of quartz-quartz, indicating that the presence of clay could weaken the frictional strength of quartz. The effect of the interlayer water film on friction behavior was rather complex, showing the lubricating or bonding role, which has been discussed and analyzed in the present study.
Keywords: quartz, kaolinite, Molecule dynamics, Nanoscale friction, Interface
Suggested Citation: Suggested Citation