header

Detection and Analysis of Deteriorated Areas in Solar PV Modules Using Unsupervised Sensing Algorithms and 3D Augmented Reality

16 Pages Posted: 31 Aug 2023 Publication Status: Published

See all articles by Adel Oulefki

Adel Oulefki

Centre de Développement des Technologies Avancées (CDTA)

Yassine Himeur

University of Dubai

Thaweesak Trongtiraku

Rajamangala University of Technology Phra Nakhon

Kahina Amara

Centre de Développement des Technologies Avancées (CDTA)

Sos Agaian

CUNY College of Staten Island

Samir Benbelkacem

Centre de Développement des Technologies Avancées (CDTA)

Mohamed Amine Guerroudji

Centre de Développement des Technologies Avancées (CDTA)

Mohamed Zemmouri

Université Kasdi Merbah-Ouargla

Sahla Ferhat

Centre de Développement des Technologies Avancées (CDTA)

Nadia Zenati

Centre de Développement des Technologies Avancées (CDTA)

Shadi Atalla

University of Dubai

Wathiq Mansoor

University of Dubai

Abstract

Solar Photovoltaic (PV) is increasingly being used to address the global concern of energy security. However, hotspots and snail trails in PV modules, caused mostly by cracks, reduce their efficiency and power capacity. This article presents a new methodology for automatically segmenting and analyzing anomalies like hotspots and snail trails in PV modules, leveraging unsupervised sensing algorithms and 3D Augmented Reality (AR) for visualization. The computer simulations demonstrate enhanced segmentation efficiency compared to current state-of-the-art segmentation techniques, namely Weka and the Meta Segment Anything Model (SAM). These simulations utilized the Cali-Thermal Solar Panels and Solar Panel Infrared Image Datasets for evaluation. The evaluation metrics included the Jaccard Index, Dice coefficient, Precision, and Recall. The calculated values for these metrics were 0.76, 0.82, 0.90, 0.99, and 0.76, respectively. Our objective is to leverage drone technology for real-time, automatic solar panel detection, which would significantly boost the efficacy of PV maintenance. The proposed methodology could improve solar PV maintenance by enabling swift, precise anomaly detection without human intervention. This could lead to significant cost savings, increased energy production, and improved overall performance of solar PV systems. Moreover, the novel combination of unsupervised sensing algorithms with 3D AR visualization heralds new opportunities for future research and development in solar PV maintenance.

Keywords: Solar photovoltaic (PV), Fault and abnormality detection, Unsupervised Segmentation, Image Enhancement, Augmented reality visualization.

Suggested Citation

Oulefki, Adel and Himeur, Yassine and Trongtiraku, Thaweesak and Amara, Kahina and Agaian, Sos and Benbelkacem, Samir and Guerroudji, Mohamed Amine and Zemmouri, Mohamed and Ferhat, Sahla and Zenati, Nadia and Atalla, Shadi and Mansoor, Wathiq, Detection and Analysis of Deteriorated Areas in Solar PV Modules Using Unsupervised Sensing Algorithms and 3D Augmented Reality. Available at SSRN: https://ssrn.com/abstract=4544590 or http://dx.doi.org/10.2139/ssrn.4544590

Adel Oulefki

Centre de Développement des Technologies Avancées (CDTA) ( email )

Yassine Himeur (Contact Author)

University of Dubai ( email )

AL MAKTOOM STREET
Dubai, 14143
United Arab Emirates

Thaweesak Trongtiraku

Rajamangala University of Technology Phra Nakhon ( email )

399 Samsen Rd. Vachira Phayaban
Dusit, 10300
Thailand

Kahina Amara

Centre de Développement des Technologies Avancées (CDTA) ( email )

Sos Agaian

CUNY College of Staten Island ( email )

Samir Benbelkacem

Centre de Développement des Technologies Avancées (CDTA) ( email )

Mohamed Amine Guerroudji

Centre de Développement des Technologies Avancées (CDTA) ( email )

Mohamed Zemmouri

Université Kasdi Merbah-Ouargla ( email )

Sahla Ferhat

Centre de Développement des Technologies Avancées (CDTA) ( email )

Nadia Zenati

Centre de Développement des Technologies Avancées (CDTA) ( email )

Shadi Atalla

University of Dubai ( email )

AL MAKTOOM STREET
Dubai, 14143
United Arab Emirates

Wathiq Mansoor

University of Dubai ( email )

AL MAKTOOM STREET
Dubai, 14143
United Arab Emirates

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Downloads
79
Abstract Views
410
PlumX Metrics