Incentivizing Resource Pooling

81 Pages Posted: 11 Oct 2023 Last revised: 15 Jan 2025

See all articles by Chen Chen

Chen Chen

New York University (NYU) - New York University (NYU), Shanghai

Yilun Chen

The Chinese University of Hong Kong, Shenzhen

Pengyu Qian

Boston University - Questrom School of Business

Date Written: September 27, 2023

Abstract

Resource pooling improves system efficiency drastically in large stochastic systems, but its effective implementation in decentralized systems remains relatively underexplored. This paper studies how to incentivize resource pooling when agents are self-interested, and their states are private information. Our primary motivation is applications in the design of decentralized computing markets, among others. We study a standard multi-server queueing model in which each server is associated with an M/M/1 queue and aims to minimize its time-average job holding and processing costs. We design a simple token-based mechanism where servers can earn tokens by offering help and spend tokens to request help from other servers, all in their self-interest. The mechanism induces a complex game among servers. We employ the fluid mean-field equilibrium (FMFE) concept to analyze the system, combining mean-field approximation with fluid relaxation. This framework enables us to derive a closed-form characterization of servers' FMFE strategies. We show that these FMFE strategies approximate well the servers' rational behavior. We leverage this framework to optimize the design of the mechanism and present our main results: As the number of servers increases, the proposed mechanism incentivizes complete resource pooling---that is, the system dynamics and performance under our mechanism match those under centralized control. Finally, we show that our mechanism achieves the first-best performance even when helping others incurs higher job processing costs and remains nearly optimal in settings with heterogeneous servers.

Keywords: Resource pooling, decentralized application, fluid mean-field equilibrium, dynamic games

Suggested Citation

Chen, Chen and Chen, Yilun and Qian, Pengyu, Incentivizing Resource Pooling (September 27, 2023). Available at SSRN: https://ssrn.com/abstract=4586771 or http://dx.doi.org/10.2139/ssrn.4586771

Chen Chen (Contact Author)

New York University (NYU) - New York University (NYU), Shanghai ( email )

567 West Yangsi Rd
Shanghai, Shanghai 200124
China

Yilun Chen

The Chinese University of Hong Kong, Shenzhen ( email )

Pengyu Qian

Boston University - Questrom School of Business ( email )

595 Commonwealth Avenue
Boston, MA MA 02215
United States

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Downloads
181
Abstract Views
1,664
Rank
349,967
PlumX Metrics