Structure of Biomimetic Casein Micelles: Critical Tests of the Hydrophobic Colloid and Multivalent-Binding Models Using Recombinant Deuterated and Phosphorylated Β-Casein
47 Pages Posted: 24 Oct 2023
There are 2 versions of this paper
Structure of Biomimetic Casein Micelles: Critical Tests of the Hydrophobic Colloid and Multivalent-Binding Models Using Recombinant Deuterated and Phosphorylated Β-Casein
Structure of Biomimetic Casein Micelles: Critical Tests of the Hydrophobic Colloid and Multivalent-Binding Models Using Recombinant Deuterated and Phosphorylated Β-Casein
Abstract
Milk contains high concentrations of amyloidogenic casein proteins and is supersaturated with respect to crystalline calcium phosphates such as apatite. Nevertheless, the mammary gland normally remains unmineralized and free of amyloid. Unlike κ-casein, β- and αS-caseins are highly effective mineral chaperones that prevent ectopic and pathological calcification of the mammary gland. Milk invariably contains a mixture of two to five different caseins that act on each other as molecular chaperones. Instead of forming amyloid fibrils, several thousand caseins and hundreds of nanoclusters of amorphous calcium phosphate combine to form fuzzy complexes called casein micelles. To understand the biological functions of the casein micelle its structure needs to be understood better than at present. The location in micelles of the highly amyloidogenic k-casein is disputed. In traditional hydrophobic colloid models, it, alone, forms a stabilizing surface coat that also determines the average size of the micelles. In the recent multivalent-binding model, κ-casein is present throughout the micelle, in intimate contact with the other caseins. To discriminate between these models, a range of biomimetic micelles was prepared using a fixed concentration of the mineral chaperone b-casein and nanoclusters of calcium phosphate, with variable concentrations of κ-casein. A biomimetic micelle was also prepared using a highly deuterated and in vivo phosphorylated recombinant β-casein with calcium phosphate and unlabelled κ-casein. Neutron and X-ray scattering experiments revealed that κ-casein is distributed throughout the micelle, in quantitative agreement with the multivalent-binding model but contrary to the hydrophobic colloid models.
Keywords: Casein micelle, mineral chaperone, calcium phosphate, small-angle scattering, intrinsically disordered protein
Suggested Citation: Suggested Citation