A Miniaturized Biosensor for Rapid Detection of Tetracycline Based on a Graphene Field-Effect Transistor with an Aptamer Modified Gate
20 Pages Posted: 28 Nov 2023
Abstract
Tetracycline is a broad-spectrum antibiotic for human, poultry and livestock that may cause health damage when enriched in humans. Therefore, it is essential to create a rapid tetracycline assay with high sensitivity, specificity and portability. In this study, a miniaturized tetracycline biosensor based on aptamer-modified graphene field-effect transistor (Apt-SGGT) was fabricated and two detection strategies using transfer characteristic curves and real-time channel current were established for different circumstances. The detection limits of the two strategies were 10 pM and 100 pM, respectively. The biosensor also demonstrated outstanding stability, anti-interference and specificity ability. Finally, the biosensor was employed to detect the content of tetracycline in Skim Milk with outstanding recovery rate. We believe that the miniaturized Apt-SGGT biosensor with appropriate detection strategies will provide an ideal portable sensing platform for many important analytes in food with superior selectivity and sensitivity.
Keywords: aptamer, Tetracycline, solution-gated graphene field-effect transistor, portable sensors, dairy products, electrochemistry
Suggested Citation: Suggested Citation