Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility
41 Pages Posted: 6 Nov 2003
There are 2 versions of this paper
Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility
Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility
Date Written: September 2003
Abstract
A rapidly growing literature has documented important improvements in volatility measurement and forecasting performance through the use of realized volatilities constructed from high frequency returns coupled with relatively simple reduced-form time series modeling procedures. Building on recent theoretical results from Barndorff-Nielsen and Shephard (2003c,d) for related bi-power variation measures involving the sum of high-frequency absolute returns, the present paper provides a practical framework for non-parametrically measuring the jump component in realized volatility measurements. Exploiting these ideas for a decade of high-frequency five-minute returns for the DM/$ exchange rate, the S&P 500 market index, and the 30-year U.S. Treasury bond yield, we find the jump component of the price process to be distinctly less persistent than the continuous sample path component. Explicitly including the jump measure as an additional explanatory variable in an easy-to-implement reduced form model for realized volatility results in highly significant jump coefficient estimates at the daily, weekly and quarterly forecast horizons. As such, our results hold promise for improved financial asset allocation, risk management, and derivatives pricing, by separate modeling, forecasting and pricing of the continuous and jump components of total return variability.
Keywords: Continuous-time methods, jumps, quadratic variation, realized volatility, bi-power variation, high-frequency data, volatility forecasting, HAR-RV model
JEL Classification: C1, G1
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Modeling and Forecasting Realized Volatility
By Torben G. Andersen, Tim Bollerslev, ...
-
Modeling and Forecasting Realized Volatility
By Torben G. Andersen, Tim Bollerslev, ...
-
The Distribution of Realized Exchange Rate Volatility
By Torben G. Andersen, Tim Bollerslev, ...
-
The Distribution of Exchange Rate Volatility
By Torben G. Andersen, Tim Bollerslev, ...
-
The Distribution of Exchange Rate Volatility
By Torben G. Andersen, Tim Bollerslev, ...
-
The Distribution of Stock Return Volatility
By Torben G. Andersen, Tim Bollerslev, ...
-
By Torben G. Andersen, Tim Bollerslev, ...
-
Range-Based Estimation of Stochastic Volatility Models
By Sassan Alizadeh, Michael W. Brandt, ...
-
By Torben G. Andersen, Tim Bollerslev, ...
-
By Torben G. Andersen and Tim Bollerslev