Theoretical Study on the Electrocatalytic Co2 Reduction Mechanisms Using Carbon-Nanotube-Supported Carbon-Based Single Metal Atom Catalysts
24 Pages Posted: 19 Dec 2023
Abstract
In this study, five Ni-doped carbon-based single metal atom catalysts supported by carbon nanotubes, which can be used for electrocatalytic CO2 reduction, were constructed. According to their structures, these catalysts include one Ni phthalocyanine (NiPc) molecule, two di- and tri-coordinated Ni-doped carbon nanoribbons, and two di-/tri-coordination Ni-doped graphene, which are denoted as NiPc/CNT, H2(H3)-Ni/CNT, 2(3)-Ni/CNT respectively. We first optimized their structures and studied the adsorption characteristics of CO2 on these catalysts with PBE+D3 method. Additionally, the electronic structure characteristics were then calculated, and the electrocatalytic mechanisms of CO2 reduction to CO, HCOOH, CH3OH and CH4 using these catalysts were studied in detail. It is found that the electrocatalytic activities of these five catalysts for reducing CO2 follow the order of 2-Ni/CNT>H2-Ni/CNT>H3-Ni/CNT>3-Ni/CNT>NiPc/CNT. As can be seen, the di-coordination catalysts perform best, followed by the tri-coordination catalysts, while the four-coordination NiPc-based catalyst performs worst. Moreover, graphene-based materials have stronger catalytic activities than their nanoribbon counterparts. Apart from these facts, these five catalytic materials may exhibit product selectivity at different limiting potentials. We hope that our present work can provide a theoretical foundation for the future design and synthesis of novel carbon-based electrocatalyst for efficient CO2 reduction.
Keywords: Electrocatalysis, Ni-doped single atom catalyst, CO2 reduction reaction, Density functional theory
Suggested Citation: Suggested Citation