Fluxes of Nitrogen and Phosphorus in Fouling Communities on Artificial Offshore Structures

23 Pages Posted: 20 Dec 2023

See all articles by Coolen J.W. Joop

Coolen J.W. Joop

Wageningen Marine Research

Babeth van der Weide

Wageningen Marine Research

Oliver Bittner

Wageningen Marine Research

Ninon Mavraki

Wageningen Marine Research

Mandy Rus

Wageningen Marine Research

Johan van der Molen

Royal Netherlands Institute for Sea Research

Rob Witbaard

Royal Netherlands Institute for Sea Research

Abstract

The number of offshore artificial structures in the North Sea is continuously increasing. Apart from the structures that have been added to the marine environment accidentally (e.g., shipwrecks), structures are also deliberately developed to meet the increasing needs for renewable energy. These structures provide habitat for fouling organisms. The fouling communities vary in abundance and composition based on location, depth, and structure age. Most fouling species filter particles from the water column, changing phytoplankton production and affecting larval settlement success, while releasing ammonium that can fuel phytoplankton growth as well as (pseudo)faeces that enriches the seabed, changing local biogeochemical cycles.Our study used in-situ incubation chambers to investigate oxygen, nitrogen, and phosphate fluxes associated with fouling organisms to improve understanding of these changes in biogeochemical cycles. Divers used incubation chambers (domes) on shipwrecks in the southern North Sea where over more than 55 years mature fouling communities have established. A series of water samples was collected from each dome during deployment to measure the change in concentration of ammonium, nitrite, nitrate, and phosphate. All fauna enclosed in the domes was collected after each measurement for further analysis.The full macrofauna dataset contained 65 unique species on 4 shipwrecks (25 to 50 species per sample). Abundance ranged from 2,187 to 59,427 individuals per sample (683 cm2). On average, a decrease in oxygen concentration of 126 µmol/gram ash free dry weight/hr was found. The sequential water samples also showed clear changes in nutrient concentration with time in all incubations. The largest changes were observed with high fouling community abundances and biomass. Ammonium, nitrite, and phosphate always increased, with 1.5-to-5-fold increases from start to end of the incubation, while for nitrate both an efflux and influx were measured. Oxygen decreased in all incubations. Mean fluxes per m² per hour were significant for ammonium (945 ± 300 [s.e.] μmol/m²/hr), nitrite (80 ± 30), phosphate (61 ± 8), and oxygen (-11,794 ± 3289), but not for nitrate (-206 ± 122). Per gram AFDW, only ammonium (12.7 ± 3.5) and oxygen (-126 ± 48) had fluxes that differed significantly from zero.Compared to average seabed (sandy bottom) oxygen demand and community fluxes from previous studies, the observed fluxes were high. Our findings resembled those from temperate biogenic reef studies. Further data collection across a larger spatial and temporal scale is needed to fully understand offshore structure effects on marine environments.

Keywords: Shipwrecks, offshore wind farms, benthos, nitrogen, phosphate, biogeochemical cycle

Suggested Citation

Joop, Coolen J.W. and van der Weide, Babeth and Bittner, Oliver and Mavraki, Ninon and Rus, Mandy and van der Molen, Johan and Witbaard, Rob, Fluxes of Nitrogen and Phosphorus in Fouling Communities on Artificial Offshore Structures. Available at SSRN: https://ssrn.com/abstract=4670151 or http://dx.doi.org/10.2139/ssrn.4670151

Coolen J.W. Joop (Contact Author)

Wageningen Marine Research ( email )

Babeth Van der Weide

Wageningen Marine Research ( email )

Oliver Bittner

Wageningen Marine Research ( email )

Ninon Mavraki

Wageningen Marine Research ( email )

Ankerpark 27
Den Helder, Noord Holland 1781AG
Netherlands

Mandy Rus

Wageningen Marine Research ( email )

Ankerpark 27
Den Helder, 1781AG
Netherlands

Johan Van der Molen

Royal Netherlands Institute for Sea Research ( email )

Rob Witbaard

Royal Netherlands Institute for Sea Research ( email )

Den Hoorn
Netherlands

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Downloads
25
Abstract Views
168
PlumX Metrics