Generative AI: Crafting Portfolios Tailored to Investor Preferences

9 Pages Posted: 15 Apr 2024

See all articles by Eric Benhamou

Eric Benhamou

Université Paris Dauphine; AI For Alpha; EB AI Advisory; Université Paris-Dauphine, PSL Research University

Jean-Jacques Ohana

AI For Alpha

Beatrice Guez

AI For Alpha

Date Written: April 1, 2024

Abstract

Investors often face challenges aligning portfolios with specific preferences or regulatory constraints, such as avoiding commodities.Can machine learning offer a solution? Using Graphical Models, we frame this as an inference problem to replicate a desired fund within set constraints. Our approach achieves a high correlation with the target portfolio, allowing cost-effective replication. By harnessing generative AI, we can even enhance the original portfolio’s performance. Applied to hedge funds, our method outperforms benchmarks while maintaining a strong correlation with the original strategy.

Keywords: Machine Learning

JEL Classification: G13

Suggested Citation

Benhamou, Eric and Ohana, Jean-Jacques and Guez, Beatrice, Generative AI: Crafting Portfolios Tailored to Investor Preferences (April 1, 2024). Available at SSRN: https://ssrn.com/abstract=4780034 or http://dx.doi.org/10.2139/ssrn.4780034

Eric Benhamou (Contact Author)

Université Paris Dauphine ( email )

Place du Maréchal de Tassigny
Paris, Cedex 16 75775
France

AI For Alpha ( email )

35 boulevard d'Inkermann
Neuilly sur Seine, 92200
France

EB AI Advisory ( email )

35 Boulevard d'Inkermann
Neuilly sur Seine, 92200
France

Université Paris-Dauphine, PSL Research University ( email )

Place du Maréchal de Lattre de Tassigny
Paris, 75016
France

Jean-Jacques Ohana

AI For Alpha ( email )

35 boulevard d'Inkermann
Neuilly sur Seine, 92200
France

Beatrice Guez

AI For Alpha ( email )

35 boulevard d'Inkermann
Neuilly sur Seine, 92200
France

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Downloads
80
Abstract Views
318
Rank
665,384
PlumX Metrics