Bismuth as a Buffer Layer for Metal Contact with Silicon Carbide Studied by in Situ Photoelectron Spectroscopy

13 Pages Posted: 3 Apr 2024

See all articles by Xiangrui Geng

Xiangrui Geng

National University of Singapore (NUS)

Yishui Ding

National University of Singapore (NUS)

Sisheng Duan

affiliation not provided to SSRN

wei CHEN

National University of Singapore (NUS)

Abstract

Silicon carbide (SiC) is a promising third-generation semiconductor due to its wide bandgap. However, the high Schottky barrier and metal-induced gap states (MIGS) at the metal/SiC interface present significant challenges for device fabrication, leading to high contact resistance and poor current delivery. This study proposes the use of bismuth (Bi), with its semimetallic properties and gap-state saturation effect, as a contact buffer layer to address these issues. We conducted a systematic investigation of the chemical and electronic characteristics of the Pt/Bi/4H-SiC(0001) system, fabricated via molecular beam epitaxy (MBE), using in situ X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). Our findings reveal weak bonding between the Bi buffer layer and the 4H-SiC(0001) surface, resulting in a slight downward band bending effect and the formation of a substantial dipole across the Bi/4H-SiC(0001) interface. Moreover, UPS spectra indicate a reduction in the work function of Pt/Bi/4H-SiC(0001), suggesting the potential for achieving low contact resistance. Notably, the Pt/Bi/4H-SiC(0001) system remains stable when exposed to 0.5 mbar of oxygen at room temperature, while a bare Bi buffer layer undergoes partial oxidation. These results provide a comprehensive understanding of the Pt/Bi/4H-SiC(0001) interfaces and strategies for improving metal/SiC contacts.

Keywords: Bi, SiC, semimetal, contact buffer layer, in situ XPS/UPS

Suggested Citation

Geng, Xiangrui and Ding, Yishui and Duan, Sisheng and CHEN, wei, Bismuth as a Buffer Layer for Metal Contact with Silicon Carbide Studied by in Situ Photoelectron Spectroscopy. Available at SSRN: https://ssrn.com/abstract=4782847 or http://dx.doi.org/10.2139/ssrn.4782847

Xiangrui Geng

National University of Singapore (NUS) ( email )

Singapore
Singapore

Yishui Ding

National University of Singapore (NUS) ( email )

Singapore
Singapore

Sisheng Duan

affiliation not provided to SSRN ( email )

Wei CHEN (Contact Author)

National University of Singapore (NUS) ( email )

Singapore
Singapore

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Downloads
46
Abstract Views
301
PlumX Metrics