High Performance Removal of Chlorophenols from an Aqueous Solution Using an Enzymatic Membrane Bioreactor

27 Pages Posted: 23 Apr 2024

See all articles by Manuel Pinelo

Manuel Pinelo

Technical University of Denmark

Katarzyna Jankowska

Technical University of Denmark

Ziran Su

Technical University of Denmark

Jakub Zdarta

Poznan University of Technology

Ioannis V. Skiadas

Technical University of Denmark

John Woodley

Technical University of Denmark

Abstract

Organochlorides and particularly chlorophenols are environmental pollutants that deserve special attention. Enzymatic membrane bioreactors may be alternatives for efficiently removing such hazardous organochlorides from aqueous solutions. We propose here a novel enzymatic membrane bioreactor comprising an ultrafiltration membrane GR81PP, electrospun fibers made of cellulose acetate, and laccase immobilized using an incubation and a fouling approach. Configurations of this biosystem exhibiting the highest catalytic activity were selected for removal of 2-chlorophenol and 4-chlorophenol from aqueous solution in an enzymatic membrane bioreactor under various process conditions. The highest removal of chlorophenols, at 88% and 74% for 2-chlorophenol and 4-chlorophenol, respectively, occurred at pH 5 and 30 ºC in the GR81PP/cellulose acetate/laccase biosystem with enzyme immobilized by the fouling method. Furthermore, the GR81PP/cellulose acetate/laccase biosystem with enzyme immobilized by the fouling method exhibited significant reusability and storage stability compared with the biosystem with laccase immobilized by the incubation method. The mechanism of enzyme immobilization is based on pore blocking and cake-layer formation, while the mechanism of chlorophenols removal was identified as a synergistic combination of membrane separation and enzymatic conversion.

Keywords: chlorophenols, electrospinning, laccase immobilization, ultrafiltration, cellulose acetate, chlorophenol removal

Suggested Citation

Pinelo, Manuel and Jankowska, Katarzyna and Su, Ziran and Zdarta, Jakub and Skiadas, Ioannis V. and Woodley, John, High Performance Removal of Chlorophenols from an Aqueous Solution Using an Enzymatic Membrane Bioreactor. Available at SSRN: https://ssrn.com/abstract=4804540 or http://dx.doi.org/10.2139/ssrn.4804540

Manuel Pinelo (Contact Author)

Technical University of Denmark ( email )

Anker Engelunds Vej 1
Building 101A
Lyngby, 2800
Denmark

Katarzyna Jankowska

Technical University of Denmark ( email )

Anker Engelunds Vej 1
Building 101A
Lyngby, 2800
Denmark

Ziran Su

Technical University of Denmark ( email )

Anker Engelunds Vej 1
Building 101A
Lyngby, 2800
Denmark

Jakub Zdarta

Poznan University of Technology ( email )

Pl. Marii Skłodowskiej-Curie 5
60-965
Poland

Ioannis V. Skiadas

Technical University of Denmark ( email )

John Woodley

Technical University of Denmark ( email )

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Downloads
11
Abstract Views
78
PlumX Metrics