Theoretical Study of the Effects of Surface Cu Coordination Environment on Co2 Hydrogenation to Ch3oh

25 Pages Posted: 28 May 2024

See all articles by Lifang Guan

Lifang Guan

Tianjin University - Tianjin University of Science and Technology

Yuzhuo Gao

Shanxi University of Finance and Economics

Chunrong Li

Tianjin University - Tianjin University of Science and Technology

He Wang

affiliation not provided to SSRN

Weiyi Zhang

Tianjin University - Tianjin University of Science and Technology

Botao Teng

Tianjin University - Tianjin University of Science and Technology

Xiao-Dong Wen

affiliation not provided to SSRN

Abstract

The coordination environment of Cu (the coordination number and arrangement of surface atoms) plays an important role in CO2 hydrogenation to CH3OH. Compared with the extensive studies of the effects of coordination number, the comprehensive effects of coordination number and arrangement of surface atoms were seldom explored in literature. To unravel the effects of surface Cu coordination environment on CO2 hydrogenation to CH3OH, the adsorption and reaction behaviors of H2 and CO2 on Cu(111), (100), (110) and (211) with different coordination numbers and arrangement of surface Cu were systematically calculated by density functional theory (DFT) and kinetic Monte Carlo (kMC) simulation. It was found that the adsorption energies of intermediates in CO2 hydrogenation on Cu surfaces increase with the decrease of coordination number. When the Cu coordination numbers are similar, the charge density on the open surface derived from the different atom arrangement becomes larger and leads to stronger interaction with intermediates than that on the compact one. DFT calculation and kMC simulation indicate that methanol formation pathway follows CO2*→HCOO*→HCOOH*→H2COOH*→H2CO*→CH3O*→CH3OH* on four Cu facets; CO formation is via CO2 direct dissociation on Cu(111), (100) and (110) but COOH* dissociation on (211). The low-coordinated surface Cu with more openness on Cu(211) is the highly active site for CO2 hydrogenation to CH3OH with high turnover of frequency (3.71×10-4 s-1) and high selectivity (87.17%) at 600 K, PCO2 = 7.5 atm and PH2 = 22.5 atm, which is much higher than those on Cu(111), (100) and (110). This work unravels the effects of coordination environment on CO2 hydrogenation at the molecular level and provides an important insight into the design and development of catalysts with high performance in CO2 hydrogenation to CH3OH.

Keywords: DFT, kMC, Cu facets, coordination environment

Suggested Citation

Guan, Lifang and Gao, Yuzhuo and Li, Chunrong and Wang, He and Zhang, Weiyi and Teng, Botao and Wen, Xiao-Dong, Theoretical Study of the Effects of Surface Cu Coordination Environment on Co2 Hydrogenation to Ch3oh. Available at SSRN: https://ssrn.com/abstract=4846062 or http://dx.doi.org/10.2139/ssrn.4846062

Lifang Guan

Tianjin University - Tianjin University of Science and Technology ( email )

China

Yuzhuo Gao

Shanxi University of Finance and Economics ( email )

No. 696, Wucheng Road
Taiyuan City, 030006
China

Chunrong Li

Tianjin University - Tianjin University of Science and Technology ( email )

China

He Wang

affiliation not provided to SSRN ( email )

No Address Available

Weiyi Zhang

Tianjin University - Tianjin University of Science and Technology ( email )

China

Botao Teng (Contact Author)

Tianjin University - Tianjin University of Science and Technology ( email )

Xiao-Dong Wen

affiliation not provided to SSRN ( email )

No Address Available

Do you have a job opening that you would like to promote on SSRN?

Paper statistics

Downloads
14
Abstract Views
95
PlumX Metrics