Can Tests Based on Option Hedging Errors Correctly Identify Volatility Risk Premia?
38 Pages Posted: 14 May 2004
Date Written: January 15, 2004
Abstract
This paper provides an in-depth analysis of the properties of popular tests for the existence and the sign of the market price of volatility risk. These tests are frequently based on the fact that for some option pricing models under continuous hedging the sign of the market price of volatility risk coincides with the sign of the mean hedging error. Empirically, however, these tests suffer from both discretization error and model mis-specification. We show that these two problems may cause the test to be either no longer able to detect additional priced risk factors or to be unable to identify the sign of their market prices of risk correctly. Our analysis is performed for the model of Black and Scholes (1973) (BS) and the stochastic volatility (SV) model of Heston (1993). In the model of BS, the expected hedging error for a discrete hedge is positive, leading to the wrong conclusion that the stock is not the only priced risk factor. In the model of Heston, the expected hedging error for a hedge in discrete time is positive when the true market price of volatility risk is zero, leading to the wrong conclusion that the market price of volatility risk is positive. If we further introduce model mis-specification by using the BS delta in a Heston world we find that the mean hedging error also depends on the slope of the implied volatility curve and on the equity risk premium. Under parameter scenarios which are similar to those reported in many empirical studies the test statistics tend to be biased upwards. The test often does not detect negative volatility risk premia, or it signals a positive risk premium when it is truly zero. The properties of this test furthermore strongly depend on the location of current volatility relative to its long-term mean, and on the degree of moneyness of the option. As a consequence tests reported in the literature may suffer from the problem that in a time-series framework the researcher cannot draw the hedging errors from the same distribution repeatedly. This implies that there is no guarantee that the empirically computed t-statistic has the assumed distribution.
Keywords: Stochastic Volatility, Volatility Risk Premium, Discretization Error, Model Error
JEL Classification: G12, G13
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Transform Analysis and Asset Pricing for Affine Jump-Diffusions
By Darrell Duffie, Jun Pan, ...
-
Transform Analysis and Asset Pricing for Affine Jump-Diffusions
By Darrell Duffie, Jun Pan, ...
-
The Impact of Jumps in Volatility and Returns
By Michael S. Johannes, Bjorn Eraker, ...
-
Implied Volatility Functions: Empirical Tests
By Bernard Dumas, Jeff Fleming, ...
-
Recovering Risk Aversion from Option Prices and Realized Returns
-
Recovering Probabilities and Risk Aversion from Option Prices and Realized Returns
-
Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options
By Gurdip Bakshi, Nikunj Kapadia, ...
-
Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options
By Nikunj Kapadia, Gurdip Bakshi, ...
-
Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices
By Yacine Ait-sahalia and Andrew W. Lo