The Ethics of AI in Health Care: An Updated Mapping Review
31 Pages Posted: 16 Oct 2024
Date Written: October 12, 2024
Abstract
Artificial intelligence's impact on healthcare is undeniable. What is less clear is whether it will be ethically justifiable. Just as we know that AI can be used to diagnose disease, predict risk, develop personalized treatment plans, monitor patients remotely, or automate triage, we also know that it can pose significant threats to patient safety and the reliability (or trustworthiness) of the healthcare sector as a whole. These ethical risks arise from (a) flaws in the evidence base of healthcare AI (epistemic concerns); (b) the potential of AI to transform fundamentally the meaning of health, the nature of healthcare, and the practice of medicine (normative concerns); and (c) the 'black box' nature of the AI development pipeline, which undermines the effectiveness of existing accountability mechanisms (traceability concerns). In this chapter, we systematically map (a)-(c) to six different levels of abstraction: individual, interpersonal, group, institutional, sectoral, and societal. The aim is to help policymakers, regulators, and other high-level stakeholders delineate the scope of regulation and other 'softer' Governing measures for AI in healthcare. We hope that by doing so, we may enable global healthcare systems to capitalize safely and reliably on the many life-saving and improving benefits of healthcare AI.
Keywords: Artificial Intelligence, Ethics, Healthcare, Health policy, Machine Learning
Suggested Citation: Suggested Citation