Bubble Tracking Velocimetry for a Liquid Jet
28 Pages Posted: 16 May 2025
Abstract
A Separate Effect Facility (SEF-POOL) was designed to measure the time-averaged momentum induced by steam injection into a subcooled water pool. Recent analysis of large-scale pool data has shown that the turbulence generated by the steam injection affects not only velocity field in the vicinity of the steam injection point but also integral pool behavior (thermal mixing and stratification). Unfortunately, the application of existing techniques for the velocity field measurements (such as Particle Image Velocimetry) is difficult due to presence of small gas bubbles and significant temperature gradients in the liquid. In this paper we introduce an experimental approach to quantification of the velocity field using Bubble based Particle Tracking Velocimetry (Bub-PTV) in which the streamwise velocity is inferred by stereoscopic tracking of air bubbles entrained by the flow. This paper presents the development of in-house code for bubble tracking and preliminary results obtained from the tests using water injection into a water pool. These water injection tests are intended to verify the setup of the experiment (e.g. air generating system, stereo cameras) and provide databases for code development and validation. The results are also compared with Computational Fluid Dynamics (CFD) simulations performed in ANSYS Fluent, and good agreement was achieved. The experimental measurements suggest that the proposed approach can provide a 3D velocity field measurement of the jet. Moreover, it indicates the potential of Bub-PTV as a reliable technique for measuring downstream axial velocity fields induced by steam injection.
Keywords: Separate effect test, bubbles, particle tracking velocimetry, turbulent jet, stereo cameras.
Suggested Citation: Suggested Citation