Theory and Calibration of Swap Market Models
FAME Working Paper No. 107
42 Pages Posted: 27 Feb 2005
Date Written: June 2005
Abstract
This paper introduces a general framework for market models, named Market Model Approach, through the concept of admissible sets of for-ward swap rates spanning a given tenor structure. We relate this concept to results in graph theory by showing that a set is admissible if and only if the associated graph is a tree. This connection enables us to enumerate all admissible models for a given tenor structure. Three main classes are identified within this framework, and correspond to the co-terminal, co-initial, and co-sliding model. We prove that the LIBOR market model is the only admissible model of a co-sliding type. By focusing on the co-terminal model in a lognormal setting, we develop and compare several approximating analytical formulae for caplets, while swaptions can be priced by a simple Black-type formula. A novel calibration technique is introduced to allow simultaneous calibration to caplet and swaption prices. Empirical calibration of the co-terminal model is shown to be faster, more robust and more efficient than the same procedure applied to the LIBOR market model. We then argue that the co-terminal approach is the simplest and most convenient market model for pricing and hedging a large variety of exotic interest-rate derivatives.
Keywords: Swap market model, cap, swaption, calibration
JEL Classification: G12, G13
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Monte Carlo Market Greeks in the Displaced Diffusion LIBOR Market Model
By Mark S. Joshi and Oh Kang Kwon
-
Effective Implementation of Generic Market Models
By Mark S. Joshi and Lorenzo Liesch
-
By Nick Denson and Mark S. Joshi
-
Fast and Accurate Greeks for the Libor Market Model
By Nick Denson and Mark S. Joshi
-
Fast Delta Computations in the Swap-Rate Market Model
By Mark S. Joshi and Chao Yang
-
Efficient Greek Estimation in Generic Market Models
By Mark S. Joshi and Chao Yang