Forecasting Time Series Subject to Multiple Structural Breaks
42 Pages Posted: 17 Nov 2004
There are 2 versions of this paper
Forecasting Time Series Subject to Multiple Structural Breaks
Date Written: September 2004
Abstract
This Paper provides a novel approach to forecasting time series subject to discrete structural breaks. We propose a Bayesian estimation and prediction procedure that allows for the possibility of new breaks over the forecast horizon, taking account of the size and duration of past breaks (if any) by means of a hierarchical hidden Markov chain model. Predictions are formed by integrating over the hyper parameters from the meta distributions that characterize the stochastic break point process. In an application to US Treasury bill rates, we find that the method leads to better out-of-sample forecasts than alternative methods that ignore breaks, particularly at long horizons.
Keywords: Structural breaks, forecasting, hierarchical hidden Markov Chain Model, Bayesian model averaging
JEL Classification: C11, C15, C53
Suggested Citation: Suggested Citation
Do you have a job opening that you would like to promote on SSRN?
Recommended Papers
-
Forecasting Time Series Subject to Multiple Structural Breaks
By M. Hashem Pesaran, Davide Pettenuzzo, ...
-
Are Apparent Findings of Nonlinearity Due to Structural Instability in Economic Time Series?
By Gary Koop and Simon Potter
-
Efficient Bayesian Inference for Multiple Change-Point and Mixture Innovation Models
By Paolo Giordani and Robert Kohn
-
Improving Forecast Accuracy by Combining Recursive and Rolling Forecasts
-
Detecting and Predicting Forecast Breakdowns
By Raffaella Giacomini and Barbara Rossi
-
Forecasting with Small Macroeconomic VARs in the Presence of Instabilities
-
A Unified Approach to Nonlinearity, Structural Change, and Outliers
By Paolo Giordani, Robert Kohn, ...
-
Forecasting and Estimating Multiple Change-Point Models with an Unknown Number of Change Points
By Simon Potter and Gary Koop